Distinguished self-adjoint extension and eigenvalues of operators with gaps. Application to Dirac-Coulomb operators
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2023), Distinguished self-adjoint extension and eigenvalues of operators with gaps. Application to Dirac-Coulomb operators, Journal of Spectral Theory. 10.48550/arXiv.2206.11679
View/ Open
Type
Article accepté pour publication ou publiéExternal document link
https://hal.science/hal-03702964Date
2023Journal name
Journal of Spectral TheoryPublisher
European Mathematical Society
Publication identifier
Metadata
Show full item recordAuthor(s)
Dolbeault, Jean
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Esteban, Maria J.

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Séré, Eric
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We consider a linear symmetric operator in a Hilbert space that is neither bounded from above nor from below, admits a block decomposition corresponding to an orthogonal splitting of the Hilbert space and has a variational gap property associated with the block decomposition. A typical example is the Dirac-Coulomb operator defined on C∞(R3 \{0},C4). In this paper we define a distinguished self-adjoint extension with a spectral gap and characterize its eigenvalues in that gap by a min-max principle. This has been done in the past under technical conditions. Here we use a different, geometric strategy, to achieve that goal by making only minimal assumptions. Our result applied to the Dirac-Coulomb-like Hamitonians covers sign-changing potentials as well as molecules with an arbitrary number of nuclei having atomic numbers less than or equal to 137.Subjects / Keywords
variational methods; self-adjoint operators; symmetric operators; quadratic forms; spectral gaps; eigenvalues; min-max principle; Rayleigh-Ritz quotients; Dirac operatorsRelated items
Showing items related by title and author.
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2006) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2023) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Article accepté pour publication ou publié
-
Esteban, Maria J.; Lewin, Mathieu; Séré, Eric (2021) Article accepté pour publication ou publié
-
Esteban, Maria J.; Lewin, Mathieu; Séré, Eric (2021) Article accepté pour publication ou publié