A statistical approach for simulating the density solution of a McKean-Vlasov equation
Hoffmann, Marc; Liu, Yating (2023), A statistical approach for simulating the density solution of a McKean-Vlasov equation. https://basepub.dauphine.psl.eu/handle/123456789/24815
View/ Open
Type
Document de travail / Working paperExternal document link
https://hal.science/hal-04096108Date
2023Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLPublished in
Paris
Pages
29
Metadata
Show full item recordAuthor(s)
Hoffmann, MarcCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Liu, Yating
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We prove optimal convergence results of a stochastic particle method for computing the classical solution of a multivariate McKean-Vlasov equation, when the measure variable is in the drift, following the classical approach of [BT97, AKH02]. Our method builds upon adaptive nonparametric results in statistics that enable us to obtain a data-driven selection of the smoothing parameter in a kernel type estimator. In particular, we generalise the Bernstein inequality of [DMH21] for mean-field McKean-Vlasov models to interacting particles Euler schemes and obtain sharp deviation inequalities for the estimated classical solution. We complete our theoretical results with a systematic numerical study, and gather empirical evidence of the benefit of using high-order kernels and data-driven smoothing parameters.Subjects / Keywords
Interacting particle systems. McKean-Vlasov models. Euler scheme. Oracle inequalities. Lepski's methodRelated items
Showing items related by title and author.
-
LIU, Yating (2022) Document de travail / Working paper
-
Bernou, Armand; Liu, Yating (2022) Document de travail / Working paper
-
Liu, Yating; Pagès, Gilles (2022) Article accepté pour publication ou publié
-
Liu, Yating; Pagès, Gilles (2022) Document de travail / Working paper
-
Della Maestra, Laëtitia; Hoffmann, Marc (2023) Article accepté pour publication ou publié