Combinatorial approximation of maximum k -vertex cover in bipartite graphs within ratio 0.7
Paschos, Vangelis Th. (2018), Combinatorial approximation of maximum k -vertex cover in bipartite graphs within ratio 0.7, RAIRO - Operations Research, 52, 1, p. 305-314. 10.1051/ro/2017085
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/abs/1502.07930Date
2018Journal name
RAIRO - Operations ResearchVolume
52Number
1Publisher
EDP Sciences
Pages
305-314
Publication identifier
Metadata
Show full item recordAuthor(s)
Paschos, Vangelis Th.Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We propose and analyze a simple purely combinatorial algorithm for MAX K-VERTEX COVER in bipartite graphs, achieving approximation ratio 0.7. The only combinatorial algorithm currently known until now for this problem is the natural greedy algorithm, that achieves ratio (e − 1)/e = 0.632.Subjects / Keywords
Approximation algorithm; Bipartite graph; Max k-VERTEX coverRelated items
Showing items related by title and author.
-
Bonnet, Edouard; Escoffier, Bruno; Paschos, Vangelis; Stamoulis, Giorgios (2016) Communication / Conférence
-
Bonnet, Edouard; Escoffier, Bruno; Paschos, Vangelis; Stamoulis, Georgios (2018) Article accepté pour publication ou publié
-
Paschos, Vangelis; Demange, Marc (1997) Article accepté pour publication ou publié
-
Paschos, Vangelis (1991) Communication / Conférence
-
Bentz, Cédric; Costa, Marie-Christine; Picouleau, Christophe; Ries, Bernard; de Werra, Dominique (2012) Article accepté pour publication ou publié