Context-Aware Recommender Systems: Aggregation-Based Dimensionality Reduction
Negre, Elsa; Ravat, Franck; Teste, Olivier (2023), Context-Aware Recommender Systems: Aggregation-Based Dimensionality Reduction, in Selmin Nurcan; Andreas L. Opdahl; Haralambos Mouratidis; Aggeliki Tsohou, Research Challenges in Information Science: Information Science and the Connected World. RCIS 2023, Springer International Publishing : Berlin Heidelberg, p. 360-377. 10.1007/978-3-031-33080-3_22
Type
Communication / ConférenceDate
2023Conference title
17th International Conference Research Challenges in Information Science: Information Science (RCIS 2023)Conference date
2023-05Conference city
CorfuConference country
GreeceBook title
Research Challenges in Information Science: Information Science and the Connected World. RCIS 2023Book author
Selmin Nurcan; Andreas L. Opdahl; Haralambos Mouratidis; Aggeliki TsohouPublisher
Springer International Publishing
Published in
Berlin Heidelberg
ISBN
978-3-031-33079-7
Number of pages
685Pages
360-377
Publication identifier
Metadata
Show full item recordAuthor(s)
Negre, ElsaLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Ravat, Franck

Institut de recherche en informatique de Toulouse [IRIT]
Teste, Olivier

Institut de recherche en informatique de Toulouse [IRIT]
Abstract (EN)
Context-aware recommender systems (CARS) rest on a multidimensional rating function: Users × Items × Context → Ratings. This multidimensional modelling should improve the quality of the recommendation process, but unfortunately, it is rare or even impossible to have ratings for all possible cases of context. Our objective is therefore twofold: (i) to reduce the dimensionality of the contextual information (in order to reduce the sparsity), which leads to (ii) propose a technique for aggregating the ratings associated with the aggregated dimensions. To do this, we organize, in the CARS utility matrix, the contextual information according to hierarchical dimensions as is done in OLAP (OnLine Analytical Processing) and we use a regression-based approach for the rating aggregation according to previously defined hierarchies. Our approach supports multiple dimensions and hierarchical aggregation of ratings. It was validated on two real world datasets.Subjects / Keywords
Context-aware recommender system; Dimensionality; ReductionRelated items
Showing items related by title and author.
-
Negre, Elsa; Ravat, Franck; Teste, Olivier (2018) Communication / Conférence
-
Vahidi Ferdousi, Zahra; Negre, Elsa; Colazzo, Dario (2017) Communication / Conférence
-
Vahidi Ferdousi, Zahra; Colazzo, Dario; Negre, Elsa (2018) Communication / Conférence
-
Li, Siying; Abel, Marie-Helene; Negre, Elsa (2021) Communication / Conférence
-
Zhong, Jinfeng; Negre, Elsa (2021) Communication / Conférence