• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

One-dimensional short-range nearest-neighbor interaction and its nonlinear diffusion limit

Fischer, Matthias; KANZLER, LAURA; Schmeiser, Christian (2023), One-dimensional short-range nearest-neighbor interaction and its nonlinear diffusion limit. https://basepub.dauphine.psl.eu/handle/123456789/24887

View/Open
FKS.pdf (483.5Kb)
Type
Document de travail / Working paper
External document link
https://hal.science/hal-04002707
Date
2023
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
15
Metadata
Show full item record
Author(s)
Fischer, Matthias
Karl-Franzens-Universität Graz
Universität Wien
KANZLER, LAURA
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Schmeiser, Christian
Fakultät für Mathematik [Wien]
Abstract (EN)
Repulsion between individuals within a finite radius is encountered in numerous applications, including cell exclusion, i.e. an overlap of cells to be avoided, bird flocks, or microscopic pedestrian models. We define such individual based particle dynamics in one spatial dimension with minimal assumptions of the repulsion force f and prove their characteristic properties. Moreover, we are able to perform a rigorous limit from the microscopic-to the macroscopic scale, where we could recover the finite interaction radius as a density threshold. Specific choices for the repulsion force f lead to well known nonlinear diffusion equations on the macroscopic scale, as e.g. the porous medium equation. At both scaling levels numerical simulations are presented and compared to underline the analytical results. We discuss the possible applications of this new diffusion term.
Subjects / Keywords
agent-based models; repulsive force; cell-exclusion; nonlinear diffusion limit

Related items

Showing items related by title and author.

  • Thumbnail
    Einstein relation and linear response in one-dimensional Mott variable-range hopping 
    Faggionato, Alessandra; Gantert, Nina; Salvi, Michèle (2019) Article accepté pour publication ou publié
  • Thumbnail
    Nonlinear diffusions as limit of kinetic equations with relaxation collision kernels 
    Dolbeault, Jean; Markowich, Peter; Oelz, Dietmar; Schmeiser, Christian (2007) Article accepté pour publication ou publié
  • Thumbnail
    Response to a small external force and fluctuations of a passive particle in a one-dimensional diffusive environment 
    Huveneers, François (2018) Article accepté pour publication ou publié
  • Thumbnail
    Nonequilibrium fluctuations for a tagged particle in mean-zero one-dimensional zero-range processes 
    Jara, Milton; Landim, Claudio; Sethuraman, Sunder Article accepté pour publication ou publié
  • Thumbnail
    Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces 
    Ehrlacher, Virginie; Lombardi, Damiano; Mula, Olga; Vialard, François-Xavier (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo