• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Approximation preserving reductions for set covering, vertex covering and independent set hierarchies under differential approximation

Ekim, Tinaz; Paschos, Vangelis (2004), Approximation preserving reductions for set covering, vertex covering and independent set hierarchies under differential approximation, International Journal of Computer Mathematics, 81, 5, p. 569-582. http://dx.doi.org/10.1080/00207160410001688592

Type
Article accepté pour publication ou publié
Date
2004
Journal name
International Journal of Computer Mathematics
Volume
81
Number
5
Publisher
Taylor & Francis
Pages
569-582
Publication identifier
http://dx.doi.org/10.1080/00207160410001688592
Metadata
Show full item record
Author(s)
Ekim, Tinaz
Paschos, Vangelis
Abstract (EN)
The notion of approximability preserving reductions between different problems deserves special attention in approximability theory. These kinds of reductions allow us polynomial time conversion of some already known 'good' approximation algorithms for some NP-hard problems into ones for some other NP-hard problems. In this context, we consider reductions for set covering and vertex covering hierarchies. Our results are then extended to hitting set and independent set hierarchies. Here, we adopt the differential approximation ratio that has the natural property to be stable under affine transformations of the objective function of a problem.
Subjects / Keywords
Vertex covering; Set covering; Hierarchy; Differential approximation ratio; Approximability preserving reductions

Related items

Showing items related by title and author.

  • Thumbnail
    A relation between the approximated versions of minimum set covering, minimum vertex covering and maximum independent set 
    Paschos, Vangelis (1994) Article accepté pour publication ou publié
  • Thumbnail
    Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2011) Article accepté pour publication ou publié
  • Thumbnail
    Average-case complexity of a branch-and-bound algorithm for maximum independent set, under the $\mathcal{G}(n,p)$ random model 
    Bourgeois, N.; Catellier, Rémi; Denat, T.; Paschos, Vangelis (2015) Document de travail / Working paper
  • Thumbnail
    A generalization of König-Egervary graphs and heuristics for maximum independent set problem with improved approximation ratios 
    Paschos, Vangelis; Demange, Marc (1997) Article accepté pour publication ou publié
  • Thumbnail
    Solving vertex cover, independent set and related problems by a Boltzmann machine 
    Paschos, Vangelis; Pekergin, Ferhan; Zissimopoulos, Vassilis (1992) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo