Well-posedness of the transport equation by stochastic perturbation
Flandoli, Franco; Gubinelli, Massimiliano; Priola, Enrico (2010), Well-posedness of the transport equation by stochastic perturbation, Inventiones Mathematicae, 180, 1, p. 1-53. http://dx.doi.org/10.1007/s00222-009-0224-4
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00359723/en/Date
2010Journal name
Inventiones MathematicaeVolume
180Number
1Publisher
Springer
Pages
1-53
Publication identifier
Metadata
Show full item recordAbstract (EN)
We consider the linear transport equation with a globally Holder continuous and bounded vector field. While this deterministic PDE may not be well-posed, we prove that a multiplicative stochastic perturbation of Brownian type is enough to render the equation well-posed. This seems to be the first explicit example of partial differential equation that become well-posed under the influece of noise. The key tool is a differentiable stochastic flow constructed and analysed by means of a special transformation of the drift of Tanaka type.Subjects / Keywords
ProbabilityRelated items
Showing items related by title and author.
-
Priola, Enrico; Gubinelli, Massimiliano; Flandoli, Franco (2011) Article accepté pour publication ou publié
-
Flandoli, Franco; Gubinelli, Massimiliano; Priola, Enrico (2010) Article accepté pour publication ou publié
-
Russo, Francesco; Flandoli, Franco; Gubinelli, Massimiliano (2009) Article accepté pour publication ou publié
-
Mouhot, Clément; Fournier, Nicolas (2009) Article accepté pour publication ou publié
-
Bernou, Armand; Liu, Yating (2022) Document de travail / Working paper