• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

ABC likelihood-free methods for model choice in Gibbs random fields

Grelaud, Aude; Robert, Christian P.; Marin, Jean-Michel; Rodolphe, François; Taly, Jean-François (2009), ABC likelihood-free methods for model choice in Gibbs random fields, Bayesian Analysis, 4, 2, p. 317-336. http://dx.doi.org/10.1214/09-BA412

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/0807.2767v3
Date
2009
Journal name
Bayesian Analysis
Volume
4
Number
2
Publisher
International Society for Bayesian Analysis
Pages
317-336
Publication identifier
http://dx.doi.org/10.1214/09-BA412
Metadata
Show full item record
Author(s)
Grelaud, Aude
Robert, Christian P.
Marin, Jean-Michel cc
Rodolphe, François
Taly, Jean-François
Abstract (EN)
Gibbs random fields are polymorphous statistical models that can be used to analyse different types of dependence, in particular for spatially correlated data. However, when those models are faced with the challenge of selecting a dependence structure from many, the use of standard model choice methods is hampered by the unavailability of the normalising constant in the Gibbs likelihood. In particular, from a Bayesian perspective, the computation of the posterior probabilities of the models under competition requires special likelihood-free simulation techniques like the Approximate Bayesian Computation (ABC) algorithm that is intensively used in population Genetics. We show in this paper how to implement an ABC algorithm geared towards model choice in the general setting of Gibbs random fields, demonstrating in particular that there exists a sufficient statistic across models. The accuracy of the approximation to the posterior probabilities can be further improved by importance sampling on the distribution of the models. The practical aspects of the method are detailed through two applications, the test of an iid Bernoulli model versus a first-order Markov chain, and the choice of a folding structure for a protein of Thermotoga maritima implicated into signal transduction processes.
Subjects / Keywords
Statistical models; Markov

Related items

Showing items related by title and author.

  • Thumbnail
    ABC methods for model choice in Gibbs random fields 
    Grelaud, Aude; Robert, Christian P.; Marin, Jean-Michel (2009) Article accepté pour publication ou publié
  • Thumbnail
    Choix de modèle pour les champs de Gibbs par un algorithme ABC. 
    Rodolphe, François; Marin, Jean-Michel; Taly, Jean-François; Grelaud, Aude; Robert, Christian P. (2009) Communication / Conférence
  • Thumbnail
    Reliable ABC model choice via random forests 
    Pudlo, Pierre; Marin, Jean-Michel; Estoup, Arnaud; Cornuet, Jean-Marie; Gautier, Mathieu; Robert, Christian P. (2016) Article accepté pour publication ou publié
  • Thumbnail
    Likelihood-free model choice 
    Marin, Jean-Michel; Pudlo, Pierre; Estoup, Arnaud; Robert, Christian P. (2018) Chapitre d'ouvrage
  • Thumbnail
    Why approximate Bayesian computational (ABC) methods cannot handle model choice problems 
    Pillai, Natesh S.; Marin, Jean-Michel; Robert, Christian P. (2011-01) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo