Stochastic homogenization and random lattices
Lions, Pierre-Louis; Le Bris, Claude; Blanc, Xavier (2007), Stochastic homogenization and random lattices, Journal de mathématiques pures et appliquées, 88, 1, p. 34-63. http://dx.doi.org/10.1016/j.matpur.2007.04.006
Type
Article accepté pour publication ou publiéDate
2007-04Journal name
Journal de mathématiques pures et appliquéesVolume
88Number
1Publisher
Elsevier
Pages
34-63
Publication identifier
Metadata
Show full item recordAbstract (FR)
We present some variants of stochastic homogenization theory for scalar elliptic equations of the form−div[A( x ε ,ω)∇u(x,ω)]= f . These variants basically consist in defining stochastic coefficients A( x ε ,ω) from stochastic deformations (using random diffeomorphisms) of the periodic setting, as announced in [X. Blanc, C. Le Bris, P.-L. Lions, Une variante de la théorie de l’homogénéisation stochastique des opérateurs elliptiques (A variant of stochastic homogenization theory for elliptic operators), C. R. Acad. Sci. Sér. I 343 (2006) 717–727]. The settings we define are not covered by the existing theories. We also clarify the relation between this type of questions and our construction, performed in [X. Blanc, C. Le Bris, P.-L. Lions, A definition of the ground state energy for systems composed of infinitely many particles, Commun. Partial Differential Equations 28 (1–2) (2003) 439–475; X. Blanc, C. Le Bris, P.-L. Lions, The energy of some microscopic stochastic lattices, Arch. Rat. Mech. Anal. 184 (2) (2007) 303–339], of the energy of, both deterministic and stochastic, microscopic infinite sets of points in interaction.Abstract (EN)
We present some variants of stochastic homogenization theory for scalar elliptic equations of the form -div[ A(x/ε,ω) ∇ u] = f. These variants basically consist in defining stochastic coefficients A(x/ε,ω) from stochastic deformations (using random diffeormorphisms) of the periodic setting, as announced in [4]. The settings we define are not covered by the existing theories. We also clarify the relation between this type of questions and our construction, performed in [3,5], of the energy of, both deterministic and stochastic, microscopic infinite sets of points in interaction.Subjects / Keywords
Thermodynamique; Equation différentielle; Equation dérivée partielle; Differential equation; Homogenization; Elliptic operatorRelated items
Showing items related by title and author.
-
Lions, Pierre-Louis; Le Bris, Claude; Blanc, Xavier (2007) Article accepté pour publication ou publié
-
Blanc, Xavier; Le Bris, Claude; Lions, Pierre-Louis (2019) Article accepté pour publication ou publié
-
Blanc, Xavier; Le Bris, Claude; Lions, Pierre-Louis (2012) Article accepté pour publication ou publié
-
Blanc, Xavier; Le Bris, Claude; Lions, Pierre-Louis (2015) Article accepté pour publication ou publié
-
Blanc, Xavier; Le Bris, Claude; Lions, Pierre-Louis (2002) Article accepté pour publication ou publié