Logarithmic Sobolev inequalities: regularizing effect of Lévy operators and asymptotic convergence in the Lévy-Fokker-Planck equation
dc.contributor.author | Gentil, Ivan | |
dc.contributor.author | Imbert, Cyril
HAL ID: 9368 ORCID: 0000-0002-1290-8257 | |
dc.date.accessioned | 2010-01-18T12:29:41Z | |
dc.date.available | 2010-01-18T12:29:41Z | |
dc.date.issued | 2009 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/3021 | |
dc.language.iso | en | en |
dc.subject | Lévy operator | en |
dc.subject | logarithmic Sobolev inequalities | en |
dc.subject | entropy production method | en |
dc.subject | Ornstein-Uhlenbeck equation | en |
dc.subject | Φ-entropy inequalities | en |
dc.subject | fractional Laplacian | en |
dc.subject | ultracontractivity | en |
dc.subject | Fokker-Planck equation | |
dc.subject.ddc | 519 | en |
dc.title | Logarithmic Sobolev inequalities: regularizing effect of Lévy operators and asymptotic convergence in the Lévy-Fokker-Planck equation | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | In this paper we study some applications of the Lévy logarithmic Sobolev inequality to the study of the regularity of the solution of the fractal heat equation, i. e. the heat equation where the Laplacian is replaced with the fractional Laplacian. It is also used to the study of the asymptotic behaviour of the Lévy-Ornstein-Uhlenbeck process. | en |
dc.relation.isversionofjnlname | Stochastics | |
dc.relation.isversionofjnlvol | 81 | en |
dc.relation.isversionofjnlissue | 3-4 | en |
dc.relation.isversionofjnldate | 2009-06 | |
dc.relation.isversionofjnlpages | 401-414 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1080/17442500903080306 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Taylor & Francis | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |