Homogenization of periodic semilinear parabolic degenerate PDEs
Pardoux, Etienne; Rhodes, Rémi; Sow, Bamba A. (2009), Homogenization of periodic semilinear parabolic degenerate PDEs, Annales de l'Institut Henri Poincaré. Analyse non linéaire, 26, 3, p. 979-998. http://dx.doi.org/10.1016/j.anihpc.2008.09.001
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00359844/en/Date
2009Journal name
Annales de l'Institut Henri Poincaré. Analyse non linéaireVolume
26Number
3Publisher
Elsevier
Pages
979-998
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this paper a second order semilinear parabolic PDE with rapidly oscillating coefficients is homogenized. The novelty of our result lies in the fact that we allow the second order part of the differential operator to be degenerate in some part of the space. Our fully probabilistic method is based on the deep connection between PDEs and BSDEs and the weak convergence of a class of diffusion processes.Subjects / Keywords
hormander's theorem; periodic coefficients; backward stochastic differential equation; degenerate diffusion coefficient; homogenizationRelated items
Showing items related by title and author.
-
Lions, Pierre-Louis; Souganidis, Panagiotis E. (2005) Article accepté pour publication ou publié
-
Delarue, François; Rhodes, Rémi (2009) Article accepté pour publication ou publié
-
Rhodes, Rémi (2009) Article accepté pour publication ou publié
-
Rhodes, Rémi (2008) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2015) Article accepté pour publication ou publié