Gaussian Multiplicative Chaos revisited
Robert, Raoul; Vargas, Vincent (2010), Gaussian Multiplicative Chaos revisited, Annals of Probability, 38, 2, p. 605-631. http://dx.doi.org/10.1214/09-AOP490
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00293830/en/Date
2010Journal name
Annals of ProbabilityVolume
38Number
2Publisher
Institute of Mathematical Statistics
Pages
605-631
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this article, we extend the theory of multiplicative chaos for positive definite functions in Rd of the form f(x) = 2 ln+ T|x|+ g(x) where g is a continuous and bounded function. The construction is simpler and more general than the one defined by Kahane in 1985. As main application, we give a rigorous mathematical meaning to the Kolmogorov-Obukhov model of energy dissipation in a turbulent flow.Subjects / Keywords
Multifractal processes; Random measures; Gaussian processesRelated items
Showing items related by title and author.
-
Vargas, Vincent; Rhodes, Rémi; Jin, Xiong; Barral, Julien (2013) Article accepté pour publication ou publié
-
Vargas, Vincent; Rhodes, Rémi; Chevillard, Laurent (2013) Article accepté pour publication ou publié
-
Lacoin, Hubert; Rhodes, Rémi; Vargas, Vincent (2015) Article accepté pour publication ou publié
-
Duplantier, Bertrand; Rhodes, Rémi; Sheffield, Scott; Vargas, Vincent (2014) Article accepté pour publication ou publié
-
Vargas, Vincent; Sheffield, Scott; Duplantier, Bertrand; Rhodes, Rémi (2014) Article accepté pour publication ou publié