• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Principal component analysis for interval-valued observations

Diday, Edwin; Douzal-Chouakria, Ahlame; Billard, Lynne (2011), Principal component analysis for interval-valued observations, Statistical Analysis and Data Mining, 4, 2, p. 229-246. http://dx.doi.org/10.1002/sam.10118

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00361053
Date
2011
Journal name
Statistical Analysis and Data Mining
Volume
4
Number
2
Publisher
Wiley
Pages
229-246
Publication identifier
http://dx.doi.org/10.1002/sam.10118
Metadata
Show full item record
Author(s)
Diday, Edwin
Douzal-Chouakria, Ahlame
Billard, Lynne
Abstract (EN)
One feature of contemporary datasets is that instead of the single point value in the p-dimensional space ℜp seen in classical data, the data may take interval values thus producing hypercubes in ℜp. This paper studies the vertices principal components methodology for interval-valued data; and provides enhancements to allow for so-called ‘trivial’ intervals, and generalized weight functions. It also introduces the concept of vertex contributions to the underlying principal components, a concept not possible for classical data, but one which provides a visualization method that further aids in the interpretation of the methodology. The method is illustrated in a dataset using measurements of facial characteristics obtained from a study of face recognition patterns for surveillance purposes. A comparison with analyses in which classical surrogates replace the intervals, shows how the symbolic analysis gives more informative conclusions. A second example illustrates how the method can be applied even when the number of parameters exceeds the number of observations, as well as how uncertainty data can be accommodated.
Subjects / Keywords
inertia; correlations; vertex contributions; vertices principal components

Related items

Showing items related by title and author.

  • Thumbnail
    Descriptive Statistics for Interval-valued Observations in the presence of Rules 
    Billard, Lynne; Diday, Edwin (2006-01) Article accepté pour publication ou publié
  • Thumbnail
    Principal Component Analysis for Categorical Histogram Data: Some Open Directions of Research 
    Diday, Edwin (2011) Chapitre d'ouvrage
  • Thumbnail
    Symbolic Data Analysis : Conceptual statistics and data Mining 
    Diday, Edwin; Billard, Lynne (2006-01) Chapitre d'ouvrage
  • Thumbnail
    From the statistics of data to the statistics of knowledge: Symbolic data analysis. 
    Billard, Lynne; Diday, Edwin (2003) Article accepté pour publication ou publié
  • Thumbnail
    Copula analysis of mixture models 
    Chédin, Alain; Diday, Edwin; Billard, Lynne; Vrac, Mathieu (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo