dc.contributor.author | Diday, Edwin | |
dc.contributor.author | Douzal-Chouakria, Ahlame | |
dc.contributor.author | Billard, Lynne | |
dc.date.accessioned | 2010-01-26T16:00:37Z | |
dc.date.available | 2010-01-26T16:00:37Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/3146 | |
dc.language.iso | en | en |
dc.subject | inertia | en |
dc.subject | correlations | |
dc.subject | vertex contributions | |
dc.subject | vertices principal components | |
dc.subject.ddc | 519 | en |
dc.title | Principal component analysis for interval-valued observations | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | Université Joseph Fourier - Grenoble I, Grenoble;France | |
dc.contributor.editoruniversityother | University of Georgia;États-Unis | |
dc.description.abstracten | One feature of contemporary datasets is that instead of the single point value in the p-dimensional space ℜp seen in classical data, the data may take interval values thus producing hypercubes in ℜp. This paper studies the vertices principal components methodology for interval-valued data; and provides enhancements to allow for so-called ‘trivial’ intervals, and generalized weight functions. It also introduces the concept of vertex contributions to the underlying principal components, a concept not possible for classical data, but one which provides a visualization method that further aids in the interpretation of the methodology. The method is illustrated in a dataset using measurements of facial characteristics obtained from a study of face recognition patterns for surveillance purposes. A comparison with analyses in which classical surrogates replace the intervals, shows how the symbolic analysis gives more informative conclusions. A second example illustrates how the method can be applied even when the number of parameters exceeds the number of observations, as well as how uncertainty data can be accommodated. | en |
dc.relation.isversionofjnlname | Statistical Analysis and Data Mining | |
dc.relation.isversionofjnlvol | 4 | |
dc.relation.isversionofjnlissue | 2 | |
dc.relation.isversionofjnldate | 2011 | |
dc.relation.isversionofjnlpages | 229-246 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1002/sam.10118 | |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00361053 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Wiley | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |