• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Abstract integration, Combinatorics of Trees and Differential Equations

Gubinelli, Massimiliano (2011), Abstract integration, Combinatorics of Trees and Differential Equations, in Kurusch Ebrahimi-Fard, Matilde Marcolli, Walter D. van Suijlekom, Combinatorics and Physics, American Mathematical Society : Providence, R.I., p. 135-152

Type
Chapitre d'ouvrage
External document link
https://arxiv.org/abs/0809.1821v1
Date
2011
Book title
Combinatorics and Physics
Book author
Kurusch Ebrahimi-Fard, Matilde Marcolli, Walter D. van Suijlekom
Publisher
American Mathematical Society
Published in
Providence, R.I.
ISBN
978-0-8218-5329-0
Pages
135-152
Metadata
Show full item record
Author(s)
Gubinelli, Massimiliano
Abstract (EN)
This is a review paper on recent work about the connections between rough path theory, the Connes-Kreimer Hopf algebra on rooted trees and the analysis of finite and infinite dimensional differential equation. We try to explain and motivate the theory of rough paths introduced by T. Lyons in the context of differential equations in presence of irregular noises. We show how it is used in an abstract algebraic approach to the definition of integrals over paths which involves a cochain complex of finite increments. In the context of such abstract integration theories we outline a connection with the combinatorics of rooted trees. As interesting examples where these ideas apply we present two infinite dimensional dynamical systems: the Navier-Stokes equation and the Korteweg-de-Vries equation.
Subjects / Keywords
Equations différentielles; Mathematical Physics

Related items

Showing items related by title and author.

  • Thumbnail
    Global existence for rough differential equations under linear growth conditions 
    Gubinelli, Massimiliano; Lejay, Antoine (2009-05) Document de travail / Working paper
  • Thumbnail
    Ultraviolet renormalization of the Nelson Hamiltonian through functional integration 
    Gubinelli, Massimiliano; Lorinczi, József; Hiroshima, Fumio (2014) Article accepté pour publication ou publié
  • Thumbnail
    Regularization by noise and stochastic Burgers equations 
    Gubinelli, Massimiliano; Jara, Milton (2013) Article accepté pour publication ou publié
  • Thumbnail
    Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations 
    Priola, Enrico; Gubinelli, Massimiliano; Flandoli, Franco (2011) Article accepté pour publication ou publié
  • Thumbnail
    Well-posedness of the transport equation by stochastic perturbation 
    Flandoli, Franco; Gubinelli, Massimiliano; Priola, Enrico (2010) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo