• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Law Invariant Risk Measures Have the Fatou Property

Touzi, Nizar; Schachermayer, Walter; Jouini, Elyès (2006), Law Invariant Risk Measures Have the Fatou Property, in Yamazaki, Akira; Kusuoka, Shigeo, Advances in Mathematical Economics, volume 9, Springer : Tokyo, p. 49-71

View/Open
Fatou.pdf (224.9Kb)
Type
Chapitre d'ouvrage
External document link
http://halshs.archives-ouvertes.fr/halshs-00176522/en/
Date
2006
Book title
Advances in Mathematical Economics, volume 9
Book author
Yamazaki, Akira; Kusuoka, Shigeo
Publisher
Springer
Published in
Tokyo
ISBN
978-4-431-34341-7
Number of pages
136
Pages
49-71
Metadata
Show full item record
Author(s)
Touzi, Nizar
Schachermayer, Walter
Jouini, Elyès
Abstract (EN)
S. Kusuoka [K 01, Theorem 4] gave an interesting dual characterizationof law invariant coherent risk measures, satisfying the Fatou property.The latter property was introduced by F. Delbaen [D 02]. In thepresent note we extend Kusuoka's characterization in two directions, thefirst one being rather standard, while the second one is somewhat surprising. Firstly we generalize — similarly as M. Fritelli and E. Rossaza Gianin [FG05] — from the notion of coherent risk measures to the more general notion of convex risk measures as introduced by H. F¨ollmer and A. Schied [FS 04]. Secondly — and more importantly — we show that the hypothesis of Fatou property may actually be dropped as it is automatically implied by the hypothesis of law invariance.We also introduce the notion of the Lebesgue property of a convex risk measure, where the inequality in the definition of the Fatou property is replaced by an equality, and give some dual characterizations of this property.
Subjects / Keywords
risk measures; Fatou property
JEL
D81 - Criteria for Decision-Making under Risk and Uncertainty
G32 - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

Related items

Showing items related by title and author.

  • Thumbnail
    Optimal Risk Sharing for Law Invariant Monetary Utility Functions 
    Jouini, Elyès; Schachermayer, Walter; Touzi, Nizar (2008) Article accepté pour publication ou publié
  • Thumbnail
    Law invariant risk measures on L∞ (ℝd) 
    Ekeland, Ivar; Schachermayer, Walter (2011) Article accepté pour publication ou publié
  • Thumbnail
    Vector-valued Coherent Risk Measures 
    Touzi, Nizar; Meddeb, Moncef; Jouini, Elyès (2004) Article accepté pour publication ou publié
  • Thumbnail
    Incomplete markets, transaction costs and liquidity effects 
    Jouini, Elyès; Touzi, Nizar; Koehl, Pierre-François (1997-12) Article accepté pour publication ou publié
  • Thumbnail
    Optimal investment with taxes : an optimal control problem with endogeneous delay 
    Touzi, Nizar; Jouini, Elyès; Koehl, Pierre-François (1999-07) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo