On the selection of maximal Cheeger sets
Buttazzo, Giuseppe; Carlier, Guillaume; Comte, Myriam (2007), On the selection of maximal Cheeger sets, Differential and Integral Equations, 20, 9, p. 991-1004
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00140075/en/Date
2007-03Journal name
Differential and Integral EquationsVolume
20Number
9Publisher
Khayyam Publishing
Pages
991-1004
Metadata
Show full item recordAbstract (EN)
Given a bounded open subset Ω of ℝd and two positive weight functions ƒ et g, the Cheeger sets of Ω are the subdomains C of finite perimeter of Ω that maximize the ratio ∫cƒ(x)dx/∫∂*c g(x)dΗd-1. Existence of Cheeger sets is a well-known fact. Uniqueness is a more delicate issue and is not true in general (although it holds when Ω is convex and ƒ ≡ g ≡ 1 as recently proved in [4]). However, there always exists a unique maximal (in the sense of inclusion) Cheeger set and this paper addresses the issue of how to determine this maximal set. We show that in general the approximation by the p-Laplacian does not provide, as p → 1, a selection criterion for determining the maximal Cheeger set. On the contrary, a different perturbation scheme, based on the constrained maximization of ∫Ω ƒ(u-εΦ(u))dx for a strictly convex function Φ, gives, as ε→0, the desired maximal set.Subjects / Keywords
Cheeger sets; p-Laplacian approximation; concave penalization; 1-Laplacian type operatorsRelated items
Showing items related by title and author.
-
Carlier, Guillaume; Comte, Myriam; Peyré, Gabriel (2009) Article accepté pour publication ou publié
-
Peyré, Gabriel; Ionescu, Ioan; Comte, Myriam; Carlier, Guillaume (2011) Article accepté pour publication ou publié
-
Buttazzo, Giuseppe; Carlier, Guillaume; Tahraoui, Rabah (2010) Article accepté pour publication ou publié
-
Buttazzo, Giuseppe; Carlier, Guillaume; Laborde, Maxime (2018) Article accepté pour publication ou publié
-
Carlier, Guillaume; Comte, Myriam (2008) Article accepté pour publication ou publié