• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

On the selection of maximal Cheeger sets

Buttazzo, Giuseppe; Carlier, Guillaume; Comte, Myriam (2007), On the selection of maximal Cheeger sets, Differential and Integral Equations, 20, 9, p. 991-1004

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00140075/en/
Date
2007-03
Journal name
Differential and Integral Equations
Volume
20
Number
9
Publisher
Khayyam Publishing
Pages
991-1004
Metadata
Show full item record
Author(s)
Buttazzo, Giuseppe
Carlier, Guillaume
Comte, Myriam
Abstract (EN)
Given a bounded open subset Ω of ℝd and two positive weight functions ƒ et g, the Cheeger sets of Ω are the subdomains C of finite perimeter of Ω that maximize the ratio ∫cƒ(x)dx/∫∂*c g(x)dΗd-1. Existence of Cheeger sets is a well-known fact. Uniqueness is a more delicate issue and is not true in general (although it holds when Ω is convex and ƒ ≡ g ≡ 1 as recently proved in [4]). However, there always exists a unique maximal (in the sense of inclusion) Cheeger set and this paper addresses the issue of how to determine this maximal set. We show that in general the approximation by the p-Laplacian does not provide, as p → 1, a selection criterion for determining the maximal Cheeger set. On the contrary, a different perturbation scheme, based on the constrained maximization of ∫Ω ƒ(u-εΦ(u))dx for a strictly convex function Φ, gives, as ε→0, the desired maximal set.
Subjects / Keywords
Cheeger sets; p-Laplacian approximation; concave penalization; 1-Laplacian type operators

Related items

Showing items related by title and author.

  • Thumbnail
    Approximation of Maximal Cheeger Sets by Projection 
    Carlier, Guillaume; Comte, Myriam; Peyré, Gabriel (2009) Article accepté pour publication ou publié
  • Thumbnail
    A Projection Approach to the Numerical Analysis of Limit Load Problems 
    Peyré, Gabriel; Ionescu, Ioan; Comte, Myriam; Carlier, Guillaume (2011) Article accepté pour publication ou publié
  • Thumbnail
    On Some Systems Controlled by the Structure of Their Memory 
    Buttazzo, Giuseppe; Carlier, Guillaume; Tahraoui, Rabah (2010) Article accepté pour publication ou publié
  • Thumbnail
    On the Wasserstein distance between mutually singular measures 
    Buttazzo, Giuseppe; Carlier, Guillaume; Laborde, Maxime (2018) Article accepté pour publication ou publié
  • Thumbnail
    Thomas Lachand-Robert--memorial volume. 
    Carlier, Guillaume; Comte, Myriam (2008) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo