Show simple item record

dc.contributor.authorBéthuel, Fabrice
dc.contributor.authorGravejat, Philippe
HAL ID: 812
dc.contributor.authorSaut, Jean-Claude
dc.contributor.authorSmets, Didier
dc.date.accessioned2010-02-15T10:40:34Z
dc.date.available2010-02-15T10:40:34Z
dc.date.issued2010
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/3453
dc.language.isoenen
dc.subjectGross-Pitaevskii equationen
dc.subjectKorteweg-de Vries equationen
dc.subjectlong-wave limiten
dc.subject.ddc515en
dc.titleOn the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation IIen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this paper, we proceed along our analysis of the Korteweg-de Vries approximation of the Gross-Pitaevskii equation initiated in a previous paper. At the long-wave limit, we establish that solutions of small amplitude to the one-dimensional Gross-Pitaevskii equation split into two waves with opposite constant speeds $\pm \sqrt{2}$, each of which are solutions to a Korteweg-de Vries equation. We also compute an estimate of the error term which is somewhat optimal as long as travelling waves are considered. At the cost of higher regularity of the initial data, this improves our previous estimate.en
dc.relation.isversionofjnlnameCommunications in Partial Differential Equations
dc.relation.isversionofjnlvol35en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate2010-01
dc.relation.isversionofjnlpages113-164en
dc.relation.isversionofdoihttp://dx.doi.org/10.1080/03605300903222542en
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00371344/en/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherTaylor & Francisen
dc.subject.ddclabelAnalyseen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record