Optimal Control under Stochastic Target Constraints
Bouchard, Bruno (2009), Optimal Control under Stochastic Target Constraints, Symposium on Optimal Stopping with Applications, Turku, FINLAND
Type
Communication / ConférenceDate
2009Conference title
Symposium on Optimal Stopping with ApplicationsConference city
TurkuConference country
FINLANDMetadata
Show full item recordAuthor(s)
Bouchard, BrunoAbstract (EN)
We study a class of Markovian optimal stochastic control problems in which the controlled process $Z^\nu$ is constrained to satisfy an a.s.~constraint $Z^\nu(T)\in G\subset \R^{d+1}$ $\Pas$ at some final time $T>0$. When the set is of the form $G:=\{(x,y)\in \R^d\x \R~:~g(x,y)\ge 0\}$, with $g$ non-decreasing in $y$, we provide a Hamilton-Jacobi-Bellman characterization of the associated value function. It gives rise to a state constraint problem where the constraint can be expressed in terms of an auxiliary value function $w$ which characterizes the set $D:=\{(t,Z^\nu(t))\in [0,T]\x\R^{d+1}~:~Z^\nu(T)\in G\;a.s.$ for some $ \nu\}$. Contrary to standard state constraint problems, the domain $D$ is not given a-priori and we do not need to impose conditions on its boundary. It is naturally incorporated in the auxiliary value function $w$ which is itself a viscosity solution of a non-linear parabolic PDE. Applying ideas recently developed in Bouchard, Elie and Touzi (2008), our general result also allows to consider optimal control problems with moment constraints of the form $\Esp{g(Z^\nu(T))}\ge 0$ or $\Pro{g(Z^\nu(T))\ge 0}\ge p$.Subjects / Keywords
Stochastic Target Problem; discontinuous viscosity solutions; Optimal Control; State Constraint ProblemRelated items
Showing items related by title and author.
-
Bouchard, Bruno; Elie, Romuald; Imbert, Cyril (2010) Article accepté pour publication ou publié
-
Bouchard, Bruno; Dang, Ngoc Minh (2013) Article accepté pour publication ou publié
-
Elie, Romuald (2009) Communication / Conférence
-
Bouchard, Bruno; Dang, Ngoc Minh (2012) Article accepté pour publication ou publié
-
Bouchard, Bruno (2009-09-24) Article accepté pour publication ou publié