Show simple item record

dc.contributor.authorCarlier, Guillaume
dc.contributor.authorSantambrogio, Filippo
dc.contributor.authorde Pascale, Luigi
dc.date.accessioned2010-02-19T11:21:00Z
dc.date.available2010-02-19T11:21:00Z
dc.date.issued2010
dc.identifier.issn1539-6746
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/3518
dc.language.isoenen
dc.subjectoptimal transport
dc.subjectMonge-Kantorovich problem
dc.subjectexistence of optimal maps
dc.subjectgeneral norms
dc.subject.ddc515en
dc.titleA strategy for non-strictly convex transport costs and the example of ║x−y║p in R2
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThis paper deals with the existence of optimal transport maps for some optimal transport problems with a convex but non strictly convex cost. We give a decomposition strategy to address this issue. As a consequence of our procedure, we have to treat some transport problems, of independent interest, with a convex constraint on the displacement. To illustrate possible results obtained through this general approach, we prove exisence of optimal transport maps in the case where the source measure is absolutely continuous with respect to the Lebesque measure and the transportation cost is of the form h(\| x-y\|) with h strictly convex increasing and \|.\| an arbitrary norm in R^2.
dc.relation.isversionofjnlnameCommunications in Mathematical Sciences
dc.relation.isversionofjnlvol8
dc.relation.isversionofjnlissue4
dc.relation.isversionofjnldate2010
dc.relation.isversionofjnlpages931-941
dc.relation.isversionofdoi10.4310/CMS.2010.v8.n4.a8
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-00417303/
dc.description.sponsorshipprivatenonen
dc.relation.isversionofjnlpublisherInternational Press
dc.subject.ddclabelAnalyseen
dc.description.ssrncandidatenon
dc.description.halcandidateoui
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2018-03-01T13:22:36Z


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record