• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

A vanilla Rao-Blackwellisation of Metropolis-Hastings algorithms

Douc, Randal; Robert, Christian P. (2011), A vanilla Rao-Blackwellisation of Metropolis-Hastings algorithms, Annals of Statistics, 39, 1, p. 261-277. http://dx.doi.org/10.1214/10-AOS838

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/0904.2144v5
Date
2011
Journal name
Annals of Statistics
Volume
39
Number
1
Publisher
Institute of Mathematical Statistics
Pages
261-277
Publication identifier
http://dx.doi.org/10.1214/10-AOS838
Metadata
Show full item record
Author(s)
Douc, Randal
Communications, Images et Traitement de l'Information [TSP - CITI]
Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux [SAMOVAR]
Robert, Christian P.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Centre de Recherche en Économie et Statistique [CREST]
Abstract (EN)
Casella and Robert (1996) presented a general Rao--Blackwellisation principle for accept-reject and Metropolis-Hastings schemes that leads to significant decreases in the variance of the resulting estimators, but at a high cost in computing and storage. Adopting a completely different perspective, we introduce instead a universal scheme that guarantees variance reductions in all Metropolis-Hastings~based estimators while keeping the computing cost under control. We establish a central limit theorems for the improved estimators and illustrate their performances on toy examples.
Subjects / Keywords
Metropolis-Hastings algorithm; central limit theorem; Markov Chain Monte Carlo (MCMC); conditioning; variance reduction
JEL
C15 - Statistical Simulation Methods: General

Related items

Showing items related by title and author.

  • Thumbnail
    Convergence of adaptive mixtures of importance sampling schemes 
    Douc, Randal; Guillin, Arnaud; Marin, Jean-Michel; Robert, Christian P. (2007) Article accepté pour publication ou publié
  • Thumbnail
    Rao–Blackwellisation in the Markov Chain Monte Carlo Era 
    Robert, Christian P.; Roberts, Gareth (2021) Article accepté pour publication ou publié
  • Thumbnail
    On variance stabilisation in population Monte Carlo by double Rao-Blackwellisation 
    Robert, Christian P.; Marin, Jean-Michel; Iacobucci, Alessandra (2010) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive Importance Sampling in General Mixture Classes 
    Cappé, Olivier; Douc, Randal; Guillin, Arnaud; Marin, Jean-Michel; Robert, Christian P. (2008) Article accepté pour publication ou publié
  • Thumbnail
    Minimum variance importance sampling via Population Monte Carlo 
    Douc, Randal; Guillin, Arnaud; Marin, Jean-Michel; Robert, Christian P. (2007) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo