• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Kernel estimation of Greek weights by parameter randomization

Touzi, Nizar; Fermanian, Jean-David; Elie, Romuald (2007), Kernel estimation of Greek weights by parameter randomization, The Annals of Applied Probability, 17, 4, p. 1399 - 1423. http://dx.doi.org/10.1214/105051607000000186

Type
Article accepté pour publication ou publié
Date
2007
Journal name
The Annals of Applied Probability
Volume
17
Number
4
Pages
1399 - 1423
Publication identifier
http://dx.doi.org/10.1214/105051607000000186
Metadata
Show full item record
Author(s)
Touzi, Nizar
Fermanian, Jean-David
Elie, Romuald
Abstract (EN)
A Greek weight associated to a parameterized random variable Z(λ) is a random variable π such that ∇λE[φ(Z(λ))]=E[φ(Z(λ))π] for any function φ. The importance of the set of Greek weights for the purpose of Monte Carlo simulations has been highlighted in the recent literature. Our main concern in this paper is to devise methods which produce the optimal weight, which is well known to be given by the score, in a general context where the density of Z(λ) is not explicitly known. To do this, we randomize the parameter λ by introducing an a priori distribution, and we use classical kernel estimation techniques in order to estimate the score function. By an integration by parts argument on the limit of this first kernel estimator, we define an alternative simpler kernel-based estimator which turns out to be closely related to the partial gradient of the kernel-based estimator of $\mathbb{E}[\phi(Z(\lambda))]$. Similarly to the finite differences technique, and unlike the so-called Malliavin method, our estimators are biased, but their implementation does not require any advanced mathematical calculation. We provide an asymptotic analysis of the mean squared error of these estimators, as well as their asymptotic distributions. For a discontinuous payoff function, the kernel estimator outperforms the classical finite differences one in terms of the asymptotic rate of convergence. This result is confirmed by our numerical experiments.
Subjects / Keywords
Greek weights; Monte Carlo simulation; nonparametric regression

Related items

Showing items related by title and author.

  • Thumbnail
    Discrete-Time Approximation of BSDEs and Probabilistic Schemes for Fully Nonlinear PDEs 
    Bouchard, Bruno; Elie, Romuald; Touzi, Nizar (2009) Chapitre d'ouvrage
  • Thumbnail
    Double Kernel Estimation of Sensitivities 
    Elie, Romuald (2009) Article accepté pour publication ou publié
  • Thumbnail
    Stochastic target problems with controlled loss 
    Bouchard, Bruno; Elie, Romuald; Touzi, Nizar (2009) Article accepté pour publication ou publié
  • Thumbnail
    Optimal lifetime consumption and investment under a drawdown constraint 
    Touzi, Nizar; Elie, Romuald (2008) Article accepté pour publication ou publié
  • Thumbnail
    Volatility Strategies for Global and Country Specific European Investors 
    Brière, Marie; Fermanian, Jean-David; Malongo, Hassan; Signori, Ombretta (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo