Low Density Limit and the Quantum Langevin equation for the Heat Bath
Dhahri, Ameur (2009), Low Density Limit and the Quantum Langevin equation for the Heat Bath, Open Systems & Information Dynamics, 16, 4. http://dx.doi.org/10.1142/S1230161209000268
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00265934/en/Date
2009Journal name
Open Systems & Information DynamicsVolume
16Number
4Publisher
World Scientific
Publication identifier
Metadata
Show full item recordAuthor(s)
Dhahri, AmeurAbstract (EN)
We consider a repeated quantum interaction model describing a small system $\Hh_S$ in interaction with each one of the identical copies of the chain $\bigotimes_{\N^*}\C^{n+1}$, modeling a heat bath, one after another during the same short time intervals $[0,h]$. We suppose that the repeated quantum interaction Hamiltonian is split in two parts: a free part and an interaction part with time scale of order $h$. After giving the GNS representation, we establish the relation between the time scale $h$ and the classical low density limit. We introduce a chemical potential $\mu$ related to the time $h$ as follows: $h^2=e^{\beta\mu}$. We further prove that the solution of the associated discrete evolution equation converges strongly, when $h$ tends to 0, to the unitary solution of a quantum Langevin equation directed by Poisson processes.Subjects / Keywords
Repeated quantum interactions; quantum stochastique differentiel equation (or quantum Langevin equation); low density limit; Poisson processesRelated items
Showing items related by title and author.
-
Dhahri, Ameur (2008) Document de travail / Working paper
-
Dhahri, Ameur (2008) Article accepté pour publication ou publié
-
Attal, Stéphane; Dhahri, Ameur (2010) Article accepté pour publication ou publié
-
Lissy, Pierre (2015) Article accepté pour publication ou publié
-
Lissy, Pierre (2022) Document de travail / Working paper