• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Spinal partitions and invariance under re-rooting of continuum random trees

Winkel, Matthias; Pitman, Jim; Haas, Bénédicte (2009), Spinal partitions and invariance under re-rooting of continuum random trees, Annals of Probability, 37, 4, p. 1381-1411. http://dx.doi.org/10.1214/08-AOP434

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00149050/en/
Date
2009
Journal name
Annals of Probability
Volume
37
Number
4
Publisher
Institute of Mathematical Statistics
Pages
1381-1411
Publication identifier
http://dx.doi.org/10.1214/08-AOP434
Metadata
Show full item record
Author(s)
Winkel, Matthias
Pitman, Jim
Haas, Bénédicte
Abstract (EN)
We develop some theory of spinal decompositions of discrete and continuous fragmentation trees. Specifically, we consider a coarse and a fine spinal integer partition derived from spinal tree decompositions. We prove that for a two-parameter Poisson-Dirichlet family of continuous fragmentation trees, including the stable trees of Duquesne and Le Gall, the fine partition is obtained from the coarse one by shattering each of its parts independently, according to the same law. As a second application of spinal decompositions, we prove that among the continuous fragmentation trees, stable trees are the only ones whose distribution is invariant under uniform re-rooting.
Subjects / Keywords
random re-rooting; spinal decomposition; continuum random tree; fragmentation process; Poisson-Dirichlet distribution; discrete tree; Markov branching model

Related items

Showing items related by title and author.

  • Thumbnail
    Continuum tree asymptotics of discrete fragmentations and applications to phylogenetic models 
    Winkel, Matthias; Pitman, Jim; Miermont, Grégory; Haas, Bénédicte (2008-09) Article accepté pour publication ou publié
  • Thumbnail
    The genealogy of self-similar fragmentations with negative index as a continuum random tree 
    Haas, Bénédicte; Miermont, Grégory (2004) Article accepté pour publication ou publié
  • Thumbnail
    Scaling limits of Markov branching trees, with applications to Galton-Watson and random unordered trees 
    Haas, Bénédicte; Miermont, Grégory (2012) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotics of heights in Rrandom trees constructed by aggregation 
    Haas, Bénédicte (2017) Article accepté pour publication ou publié
  • Thumbnail
    Loss of mass in deterministic and random fragmentations 
    Haas, Bénédicte (2003) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo