Spinal partitions and invariance under re-rooting of continuum random trees
Winkel, Matthias; Pitman, Jim; Haas, Bénédicte (2009), Spinal partitions and invariance under re-rooting of continuum random trees, Annals of Probability, 37, 4, p. 1381-1411. http://dx.doi.org/10.1214/08-AOP434
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00149050/en/Date
2009Journal name
Annals of ProbabilityVolume
37Number
4Publisher
Institute of Mathematical Statistics
Pages
1381-1411
Publication identifier
Metadata
Show full item recordAbstract (EN)
We develop some theory of spinal decompositions of discrete and continuous fragmentation trees. Specifically, we consider a coarse and a fine spinal integer partition derived from spinal tree decompositions. We prove that for a two-parameter Poisson-Dirichlet family of continuous fragmentation trees, including the stable trees of Duquesne and Le Gall, the fine partition is obtained from the coarse one by shattering each of its parts independently, according to the same law. As a second application of spinal decompositions, we prove that among the continuous fragmentation trees, stable trees are the only ones whose distribution is invariant under uniform re-rooting.Subjects / Keywords
random re-rooting; spinal decomposition; continuum random tree; fragmentation process; Poisson-Dirichlet distribution; discrete tree; Markov branching modelRelated items
Showing items related by title and author.
-
Winkel, Matthias; Pitman, Jim; Miermont, Grégory; Haas, Bénédicte (2008-09) Article accepté pour publication ou publié
-
Haas, Bénédicte; Miermont, Grégory (2004) Article accepté pour publication ou publié
-
Haas, Bénédicte; Miermont, Grégory (2012) Article accepté pour publication ou publié
-
Haas, Bénédicte (2017) Article accepté pour publication ou publié
-
Haas, Bénédicte (2003) Article accepté pour publication ou publié