Combinatorial 5/6-approximation of Max Cut in graphs of maximum degree 3
Tuza, Zsolt; Bazgan, Cristina (2008), Combinatorial 5/6-approximation of Max Cut in graphs of maximum degree 3, Journal of Discrete Algorithms, 6, 3, p. 510-519. http://dx.doi.org/10.1016/j.jda.2007.02.002
Type
Article accepté pour publication ou publiéDate
2008Journal name
Journal of Discrete AlgorithmsVolume
6Number
3Publisher
Elsevier
Pages
510-519
Publication identifier
Metadata
Show full item recordAbstract (EN)
The best approximation algorithm for Max Cut in graphs of maximum degree 3 uses semidefinite programming, has approximation ratio 0.9326, and its running time is Θ(n3.5logn); but the best combinatorial algorithms have approximation ratio 4/5 only, achieved in O(n2) time [J.A. Bondy, S.C. Locke, J. Graph Theory 10 (1986) 477–504; E. Halperin, et al., J. Algorithms 53 (2004) 169–185]. Here we present an improved combinatorial approximation, which is a 5/6-approximation algorithm that runs in O(n2) time, perhaps improvable even to O(n). Our main tool is a new type of vertex decomposition for graphs of maximum degree 3.Subjects / Keywords
Maximum cut; Cubic graph; Approximation algorithm; Vertex decomposition; Unicyclic graphRelated items
Showing items related by title and author.
-
Bazgan, Cristina; Tuza, Zsolt; Vanderpooten, Daniel (2006) Article accepté pour publication ou publié
-
Bazgan, Cristina; Toubaline, Sónia; Tuza, Zsolt (2011) Communication / Conférence
-
Bazgan, Cristina; Tuza, Zsolt; Vanderpooten, Daniel (2003) Communication / Conférence
-
Bazgan, Cristina; Tuza, Zsolt; Vanderpooten, Daniel (2007) Article accepté pour publication ou publié
-
Bazgan, Cristina; Tuza, Zsolt; Vanderpooten, Daniel (2003) Document de travail / Working paper