Homogenization of nonlinear scalar conservation laws
Dalibard, Anne-Laure (2009), Homogenization of nonlinear scalar conservation laws, Archive for Rational Mechanics and Analysis, 192, 1, p. 117-164. http://dx.doi.org/10.1007/s00205-008-0123-7
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00154678/en/Date
2009Journal name
Archive for Rational Mechanics and AnalysisVolume
192Number
1Publisher
Springer
Pages
117-164
Publication identifier
Metadata
Show full item recordAuthor(s)
Dalibard, Anne-LaureAbstract (EN)
We study the limit as $\e\to 0$ of the entropy solutions of the equation $\p_t \ue + \dv_x\left[A\left(\frac{x}{\e},\ue\right)\right] =0$. We prove that the sequence $\ue$ two-scale converges towards a function $u(t,x,y)$, and $u$ is the unique solution of a limit evolution problem. The remarkable point is that the limit problem is not a scalar conservation law, but rather a kinetic equation in which the macroscopic and microscopic variables are mixed. We also prove a strong convergence result in $L^1_{\text{loc}}$.Subjects / Keywords
Homogenization ; Scalar conservation law ; Kinetic formulationRelated items
Showing items related by title and author.
-
Dalibard, Anne-Laure (2007) Article accepté pour publication ou publié
-
Dalibard, Anne-Laure (2007) Article accepté pour publication ou publié
-
Dalibard, Anne-Laure (2006) Article accepté pour publication ou publié
-
Dalibard, Anne-Laure (2008) Article accepté pour publication ou publié
-
Dalibard, Anne-Laure (2006) Article accepté pour publication ou publié