• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Homogenization of nonlinear scalar conservation laws

Dalibard, Anne-Laure (2009), Homogenization of nonlinear scalar conservation laws, Archive for Rational Mechanics and Analysis, 192, 1, p. 117-164. http://dx.doi.org/10.1007/s00205-008-0123-7

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00154678/en/
Date
2009
Journal name
Archive for Rational Mechanics and Analysis
Volume
192
Number
1
Publisher
Springer
Pages
117-164
Publication identifier
http://dx.doi.org/10.1007/s00205-008-0123-7
Metadata
Show full item record
Author(s)
Dalibard, Anne-Laure
Abstract (EN)
We study the limit as $\e\to 0$ of the entropy solutions of the equation $\p_t \ue + \dv_x\left[A\left(\frac{x}{\e},\ue\right)\right] =0$. We prove that the sequence $\ue$ two-scale converges towards a function $u(t,x,y)$, and $u$ is the unique solution of a limit evolution problem. The remarkable point is that the limit problem is not a scalar conservation law, but rather a kinetic equation in which the macroscopic and microscopic variables are mixed. We also prove a strong convergence result in $L^1_{\text{loc}}$.
Subjects / Keywords
Homogenization ; Scalar conservation law ; Kinetic formulation

Related items

Showing items related by title and author.

  • Thumbnail
    Initial layer for the Homogenization of a Conservation Law with Vanishing Viscosity 
    Dalibard, Anne-Laure (2007) Article accepté pour publication ou publié
  • Thumbnail
    Kinetic Formulation for a Parabolic Conservation Law. Application to Homogenization 
    Dalibard, Anne-Laure (2007) Article accepté pour publication ou publié
  • Thumbnail
    Kinetic formulation for heterogeneous scalar conservation laws 
    Dalibard, Anne-Laure (2006) Article accepté pour publication ou publié
  • Thumbnail
    Homogenization of linear transport equations in a stationary ergodic setting 
    Dalibard, Anne-Laure (2008) Article accepté pour publication ou publié
  • Thumbnail
    Homogenization of a quasilinear parabolic equation with vanishing viscosity 
    Dalibard, Anne-Laure (2006) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo