• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

On the probabilistic minimum coloring and minimum k-coloring

Murat, Cécile; Paschos, Vangelis (2006), On the probabilistic minimum coloring and minimum k-coloring, Discrete Applied Mathematics, 154, 3, p. 564-586. http://dx.doi.org/10.1016/j.dam.2005.06.007

Type
Article accepté pour publication ou publié
Date
2006
Journal name
Discrete Applied Mathematics
Volume
154
Number
3
Publisher
Elsevier
Pages
564-586
Publication identifier
http://dx.doi.org/10.1016/j.dam.2005.06.007
Metadata
Show full item record
Author(s)
Murat, Cécile
Paschos, Vangelis
Abstract (EN)
We study a robustness model for the minimum coloring problem, where any vertex vi of the input-graph G(V,E) has some presence probability pi. We show that, under this model, the original coloring problem gives rise to a new coloring version (called Probabilistic Min Coloring) where the objective becomes to determine a partition of V into independent sets S1,S2,…,Sk, that minimizes the quantity View the MathML source, where, for any independent set View the MathML source, f(Si)=1-∏vjset membership, variantSi(1-pj). We show that Probabilistic Min Coloring is NP-hard and design a polynomial time approximation algorithm achieving non-trivial approximation ratio. We then focus ourselves on probabilistic coloring of bipartite graphs and show that the problem of determining the best k-coloring (called Probabilistic Min k-Coloring) is NP-hard, for any kgreater-or-equal, slanted3. We finally study Probabilistic Min Coloring and Probabilistic Min k-Coloring in a particular family of bipartite graphs that plays a crucial role in the proof of the NP-hardness result just mentioned, and in complements of bipartite graphs.
Subjects / Keywords
Graph; Approximation algorithm; NP-complete; Coloring

Related items

Showing items related by title and author.

  • Thumbnail
    Probabilistic coloring of bipartite and split graphs 
    Della Croce, Federico; Escoffier, Bruno; Murat, Cécile; Paschos, Vangelis (2005) Communication / Conférence
  • Thumbnail
    Probabilistic graph-coloring in bipartite and split graphs 
    Murat, Cécile; Escoffier, Bruno; Della Croce, Federico; Bourgeois, Nicolas; Paschos, Vangelis (2009) Article accepté pour publication ou publié
  • Thumbnail
    The probabilistic minimum vertex covering problem 
    Paschos, Vangelis; Murat, Cécile (2002) Article accepté pour publication ou publié
  • Thumbnail
    The probabilistic minimum dominating set problem 
    Boria, Nicolas; Murat, Cécile; Paschos, Vangelis (2018) Article accepté pour publication ou publié
  • Thumbnail
    A priori optimization for the probabilistic maximum independent set problem 
    Murat, Cécile; Paschos, Vangelis (2002) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo