• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Weak KAM pairs and Monge-Kantorovich duality

Bernard, Patrick; Buffoni, Boris (2007), Weak KAM pairs and Monge-Kantorovich duality, in Yanagida, Eiji; Tsutsumi, Yoshio; Tanaka, Kazunaga; Kozono, Hideo, Asymptotic Analysis and Singularities: Elliptic and Parabolic PDEs and Related Problems, AMS, p. 397-420

Type
Communication / Conférence
External document link
http://hal.archives-ouvertes.fr/hal-00014963/en/
Date
2007
Conference title
14th MSJ International Research Institute "Asymptotic Analysis and Singularity"
Conference date
2005-07
Conference city
Sendai
Conference country
Japon
Book title
Asymptotic Analysis and Singularities: Elliptic and Parabolic PDEs and Related Problems
Book author
Yanagida, Eiji; Tsutsumi, Yoshio; Tanaka, Kazunaga; Kozono, Hideo
Publisher
AMS
Series title
Advanced Studies in Pure Mathematics
Series number
47
ISBN
978-4-931469-41-9
Number of pages
410
Pages
397-420
Metadata
Show full item record
Author(s)
Bernard, Patrick cc
Buffoni, Boris
Abstract (EN)
The dynamics of globally minimizing orbits of Lagrangian systems can be studied using the Barrier function, as Mather first did, or using the pairs of weak KAM solutions introduced by Fathi. The central observation of the present paper is that Fathi weak KAM pairs are precisely the admissible pairs for the Kantorovich problem dual to the Monge transportation problem with the Barrier function as cost. We exploit this observation to recover several relations between the Barrier functions and the set of weak KAM pairs in an axiomatic and elementary way.
Subjects / Keywords
Minimizing measures; Monge-Kantorovich duality; Weak KAM theory

Related items

Showing items related by title and author.

  • Thumbnail
    The Monge problem for supercritical Mane potentials on compact manifolds 
    Bernard, Patrick; Buffoni, Boris (2006) Article accepté pour publication ou publié
  • Thumbnail
    A system of inequalities arising in mathematical economics and connected with the Monge-Kantorovich problem 
    Carlier, Guillaume; Levin, V.L.; Ekeland, Ivar; Shananin, A.A. (2002) Document de travail / Working paper
  • Thumbnail
    Minimal convex extensions and finite difference discretisation of the quadratic Monge–Kantorovich problem 
    Duval, Vincent; Benamou, Jean-David (2018) Article accepté pour publication ou publié
  • Thumbnail
    Optimal mass transportation and Mather theory 
    Bernard, Patrick; Buffoni, Boris (2007) Article accepté pour publication ou publié
  • Thumbnail
    From Nash to Cournot-Nash equilibria via the Monge-Kantorovich problem 
    Carlier, Guillaume; Blanchet, Adrien (2014) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo