Quenched scaling limits of trap models
Landim, Claudio; Jara, Milton; Quadros Teixeira, Augusto (2011), Quenched scaling limits of trap models, Annals of Probability, 39, 1, p. 176-223. http://dx.doi.org/10.1214/10-AOP554
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00362731/en/Date
2011Journal name
Annals of ProbabilityVolume
39Number
1Publisher
Institute of Mathematical Statistics
Pages
176-223
Publication identifier
Metadata
Show full item recordAbstract (EN)
Fix a strictly positive measure $W$ on the $d$-dimensional torus $\bb T^d$. For an integer $N\ge 1$, denote by $W^N_x$, $x=(x_1, \dots, x_d)$, $0\le x_i 1$, if $W$ is a finite discrete measure, $W=\sum_{i\ge 1} w_i \delta_{x_i}$, we prove that the random walk which jumps from $x/N$ uniformly to one of its neighbors at rate $(W^N_x)^{-1}$ has a metastable behavior, as defined in \cite{bl1}, described by the $K$-process introduced in \cite{fm1}.Subjects / Keywords
hydrodynamique; Marches aléatoires; Environnement aléatoireRelated items
Showing items related by title and author.
-
Jara, Milton; Landim, Claudio; Teixeira, Augusto (2014) Article accepté pour publication ou publié
-
Landim, Claudio; Jara, Milton (2008) Article accepté pour publication ou publié
-
Jara, Milton; Landim, Claudio (2006) Article accepté pour publication ou publié
-
Landim, Claudio; Jara, Milton; Faggionato, Alessandra Article accepté pour publication ou publié
-
Gonçalves, Patricia; Jara, Milton (2013) Article accepté pour publication ou publié