Separating Partition Inequalities
Baïou, Mourad; Barahona, Francisco; Mahjoub, Ali Ridha (2000), Separating Partition Inequalities, Mathematics of Operations Research, 25, 2, p. 243-254. http://dx.doi.org/10.1287/moor.25.2.243.12223
Type
Article accepté pour publication ou publiéDate
2000Journal name
Mathematics of Operations ResearchVolume
25Number
2Publisher
Informs
Pages
243-254
Publication identifier
Metadata
Show full item recordAbstract (EN)
Given a graph G = (V,E) with nonnegative weights x(e) for each edge e, a partition inequality is of the form x({delta}(S1,...,Sp))≥ap+b. Here {delta}(S1,...,Sp) denotes the multicut defined by a partition S1,...,Sp of V. Partition inequalities arise as valid inequalities for optimization problems related to k-connectivity. We give a polynomial algorithm for the associated separation problem. This is based on an algorithm for finding the minimum of x({delta}(S1,...,Sp))–p that reduces to minimizing a symmetric submodular function. This is handled with the recent algorithm of Queyranne. We also survey some applications of partition inequalities.Subjects / Keywords
k-connected subgraphs; submodular functions; separation problem; Partition inequalitiesRelated items
Showing items related by title and author.
-
Mahjoub, Ali Ridha; Barahona, Francisco; Baïou, Mourad (2011) Chapitre d'ouvrage
-
Baïou, Mourad; Mahjoub, Ali Ridha (1997) Article accepté pour publication ou publié
-
Baïou, Mourad; Mahjoub, Ali Ridha (2002) Article accepté pour publication ou publié
-
Barahona, Francisco; Mahjoub, Ali Ridha (1994) Article accepté pour publication ou publié
-
Barahona, Francisco; Fonlupt, Jean; Mahjoub, Ali Ridha (1994) Article accepté pour publication ou publié