
An improved general procedure for lexicographic bottleneck problems
Della Croce, Federico; Paschos, Vangelis; Tsoukiàs, Alexis (1999), An improved general procedure for lexicographic bottleneck problems, Operations Research Letters, 24, 4, p. 187-194. http://dx.doi.org/10.1016/S0167-6377(99)00013-9
View/ Open
Type
Article accepté pour publication ou publiéDate
1999Journal name
Operations Research LettersVolume
24Number
4Publisher
Elsevier
Pages
187-194
Publication identifier
Metadata
Show full item recordAbstract (EN)
In combinatorial optimization, the bottleneck (or minmax) problems are those problems where the objective is to find a feasible solution such that its largest cost coefficient elements have minimum cost. Here we consider a generalization of these problems, where under a lexicographic rule we want to minimize the cost also of the second largest cost coefficient elements, then of the third largest cost coefficients, and so on. We propose a general rule which leads, given the considered problem, to a vectorial version of the solution procedure for the underlying sum optimization (minsum) problem. This vectorial procedure increases by a factor of k (where k is the number of different cost coefficients) the complexity of the corresponding sum optimization problem solution procedure.Subjects / Keywords
Combinatorial optimization; Bottleneck problem; Lexicographic problemRelated items
Showing items related by title and author.
-
Paschos, Vangelis; Della Croce, Federico; Escoffier, Bruno (2007) Article accepté pour publication ou publié
-
Paschos, Vangelis; Della Croce, Federico (2008) Article accepté pour publication ou publié
-
Grosso, Andrea; Della Croce, Federico; Paschos, Vangelis (2004) Article accepté pour publication ou publié
-
Bourgeois, Nicolas; Della Croce, Federico; Escoffier, Bruno; Paschos, Vangelis (2012) Article accepté pour publication ou publié
-
Della Croce, Federico; Paschos, Vangelis (2012) Communication / Conférence