Bottleneck shortest paths on a partially ordered scale
Spanjaard, Olivier; Monnot, Jérôme (2003), Bottleneck shortest paths on a partially ordered scale, 4OR, 1, 3, p. 225-241. http://dx.doi.org/10.1007/s10288-003-0017-3
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00004060/en/Date
2003Journal name
4ORVolume
1Number
3Publisher
Springer
Pages
225-241
Publication identifier
Metadata
Show full item recordAbstract (EN)
In bottleneck combinatorial problems, admissible solutions are compared with respect to their maximal elements. In such problems, one may work with an ordinal evaluation scale instead of a numerical scale. We consider here a generalization of this problem in which one only has a partially ordered scale (instead of a completely ordered scale). After the introduction of a mappimax comparison operator between sets of evaluations (which boils down to the classical $\max$ operator when the order is complete), we establish computational complexity results for this variation of the shortest path problem. Finally, we formulate our problem as an algebraic shortest path problem and suggest adequate algorithms to solve it in the subsequent semiring.Subjects / Keywords
Shortest path; partial order; algebraic methods; bottleneck problemsRelated items
Showing items related by title and author.
-
Monnot, Jérôme; Spanjaard, Olivier (2002) Communication / Conférence
-
Galand, Lucie; Perny, Patrice; Spanjaard, Olivier (2010) Article accepté pour publication ou publié
-
Some tractable instances of interval data minmax regret problems: bounded distance from triviality Escoffier, Bruno; Monnot, Jérôme; Spanjaard, Olivier (2008) Communication / Conférence
-
Escoffier, Bruno; Monnot, Jérôme; Spanjaard, Olivier (2008) Article accepté pour publication ou publié
-
Gourvès, Laurent; Escoffier, Bruno; Spanjaard, Olivier; Monnot, Jérôme (2010) Article accepté pour publication ou publié