Is Having a Unique Equilibrium Robust?
Viossat, Yannick (2008), Is Having a Unique Equilibrium Robust?, Journal of Mathematical Economics, 44, 11, p. 1152-1160. http://dx.doi.org/10.1016/j.jmateco.2007.06.008
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00361891/en/Date
2008Journal name
Journal of Mathematical EconomicsVolume
44Number
11Publisher
Elsevier
Pages
1152-1160
Publication identifier
Metadata
Show full item recordAuthor(s)
Viossat, YannickAbstract (EN)
We investigate whether having a unique equilibrium (or a given number of equilibria) is robust to perturbation of the payoffs, both for Nash equilibrium and correlated equilibrium. We show that the set of n-player finite games with a unique correlated equilibrium is open, while this is not true of Nash equilibrium for n>2. The crucial lemma is that a unique correlated equilibrium is a quasi-strict Nash equilibrium. Related results are studied. For instance, we show that generic two-person zero-sum games have a unique correlated equilibrium and that, while the set of symmetric bimatrix games with a unique symmetric Nash equilibrium is not open, the set of symmetric bimatrix games with a unique and quasi-strict symmetric Nash equilibrium is.Subjects / Keywords
Correlated equilibrium; Linear duality; Unique equilibrium; Quasi-strict equilibriumRelated items
Showing items related by title and author.
-
Viossat, Yannick (2006-06) Document de travail / Working paper
-
Viossat, Yannick (2004-12) Document de travail / Working paper
-
Viossat, Yannick (2003-12) Document de travail / Working paper
-
Viossat, Yannick (2005-05) Document de travail / Working paper
-
Lehrer, Ehud; Solan, Eilon; Viossat, Yannick (2011) Article accepté pour publication ou publié