Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms
Viterbo, Claude; Sorrentino, Alfonso (2010), Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms, Geometry and Topology, 14, 4, p. 2383–2403. http://dx.doi.org/10.2140/gt.2010.14.2383
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00458323/fr/Date
2010Journal name
Geometry and TopologyVolume
14Number
4Publisher
Mathematical Sciences Publishers
Pages
2383–2403
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this article we prove that for a smooth fiberwise convex Hamiltonian, the asymptotic Hofer distance from the identity gives a strict upper bound to the value at $0$ of Mather's $\beta$ function, thus providing a negative answer to a question asked by K. Siburg in \cite{Siburg1998}. However, we show that equality holds if one considers the asymptotic distance defined in \cite{Viterbo1992}.Subjects / Keywords
Asymptotic Hofer distance; action-minimizing measure; symplectic homogenization; Mather's beta function; Mather's minimal average action; Viterbo distance; Mather theory; Aubry–Mather theoryRelated items
Showing items related by title and author.
-
Sorrentino, Alfonso (2011) Article accepté pour publication ou publié
-
Massart, Daniel; Sorrentino, Alfonso (2011) Article accepté pour publication ou publié
-
Tahraoui, Rabah; Vialard, François-Xavier (2016) Document de travail / Working paper
-
Espinosa, Gilles-Edouard; Elie, Romuald (2011-02) Document de travail / Working paper
-
Vialard, François-Xavier; Risser, Laurent; Bruveris, Martins (2012) Article accepté pour publication ou publié