Fractal porous medium equation
Karch, Grzegorz; Imbert, Cyril; Biler, Piotr (2010), Fractal porous medium equation, Emerging Topics in Dynamical Systems and Partial Differential Equations (DSPDES 2010), 2010-06, Barcelone, Espagne
Type
Communication / ConférenceExternal document link
http://hal.archives-ouvertes.fr/hal-00444392/fr/Date
2010Conference title
Emerging Topics in Dynamical Systems and Partial Differential Equations (DSPDES 2010)Conference date
2010-06Conference city
BarceloneConference country
EspagnePages
6
Metadata
Show full item recordAbstract (EN)
We study a generalization of the porous medium equation involving nonlocal terms. In particular, the $L^p$ decay of solutions of the Cauchy problem is proved. Explicit self-similar solutions with compact support generalizing the KZB (or Barenblatt) solutions are constructed in the case corresponding to transport equation with a nonlocal velocity.Subjects / Keywords
Self-similar solutions; $L^p$-estimates; porous medium equation; Riesz potential; fractional LaplacianRelated items
Showing items related by title and author.
-
Karch, Grzegorz; Imbert, Cyril; Biler, Piotr (2015) Article accepté pour publication ou publié
-
Karch, Grzegorz; Imbert, Cyril; Biler, Piotr (2011) Article accepté pour publication ou publié
-
Alibaud, Nathaël; Karch, Grzegorz; Imbert, Cyril (2010) Article accepté pour publication ou publié
-
Stationary solutions, intermediate asymptotics and large-time behaviour of type II Streater's models Karch, Grzegorz; Biler, Piotr; Dolbeault, Jean; Esteban, Maria J. (2001) Article accepté pour publication ou publié
-
Dolbeault, Jean; Karch, Grzegorz (2006) Communication / Conférence