• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Paraconsistent semantics for Pavelka style fuzzy sentential logic

Tsoukiàs, Alexis; Turunen, Esko; Ozturk, Meltem (2010), Paraconsistent semantics for Pavelka style fuzzy sentential logic, Fuzzy Sets and Systems, 161, 14, p. 1926-1940. http://dx.doi.org/10.1016/j.fss.2009.12.017

View/Open
Belnap9.pdf (350.6Kb)
Type
Article accepté pour publication ou publié
Date
2010
Journal name
Fuzzy Sets and Systems
Volume
161
Number
14
Publisher
Elsevier
Pages
1926-1940
Publication identifier
http://dx.doi.org/10.1016/j.fss.2009.12.017
Metadata
Show full item record
Author(s)
Tsoukiàs, Alexis cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Turunen, Esko

Ozturk, Meltem
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
The root of this work is on the one hand in Belnap's four valued paraconsistent logic, and on the other hand on Pavelka's papers further developed by Turunen. We do not introduce a new non-classical logic but, based on a related study of Perny and Tsoukiás, we introduce paraconsistent semantics of Pavelka style fuzzy sentential logic. Restricted to Łukasiewicz t-norm, our approach and the approach of Perny and Tsoukiás partly overlap; the main difference lies in the interpretation of the logical connectives implication and negation. The essential mathematical tool proved in this paper is a one–one correspondence between evidence couples and evidence matrices that holds in all injective MV-algebras. Evidence couples associate to each atomic formula p two values a and b that can be interpreted as the degrees of pros and cons for p, respectively. Four values t,f,k,u, interpreted as the degrees of the truth, falsehood, contradiction and unknownness of p, respectively, can then be calculated by means of a and b and finally, the degrees of the truth, falsehood, contradiction and unknownness of any well formed formula α are available. The obtained logic is Pavelka style fuzzy sentential logic. In such an approach truth and falsehood are not each others complements. Moreover, we solve some open problems presented by Perny and Tsoukiás.
Subjects / Keywords
Paraconsistent sentential logic; Mathematical fuzzy logic; MV-algebra

Related items

Showing items related by title and author.

  • Thumbnail
    A valued Ferrers relation for interval comparison 
    Ozturk, Meltem; Tsoukiàs, Alexis (2015) Article accepté pour publication ou publié
  • Thumbnail
    On the use of a multicriteria decision aiding tool for the evaluation of comfort 
    Guerrand, Sylvie; Ozturk, Meltem; Tsoukiàs, Alexis (2015) Chapitre d'ouvrage
  • Thumbnail
    Positive and Negative Reasons in Interval Comparisons: Valued PQI Interval Orders 
    Ozturk, Meltem; Tsoukiàs, Alexis (2004) Communication / Conférence
  • Thumbnail
    Preference Modelling 
    Tsoukiàs, Alexis; Ozturk, Meltem; Vincke, Philippe (2005) Chapitre d'ouvrage
  • Thumbnail
    Bipolar Preference Modelling and Aggregation in Decision Support 
    Tsoukiàs, Alexis; Ozturk, Meltem (2008) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo