Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials.
Desvillettes, Laurent; Mouhot, Clément (2007), Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials., Asymptotic Analysis, 54, 3-4, p. 235-245
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00079949/en/Date
2007Journal name
Asymptotic AnalysisVolume
54Number
3-4Publisher
Amsterdam : IOS Press
Pages
235-245
Metadata
Show full item recordAbstract (EN)
We consider the spatially homogeneous Boltzmann equation for regularized soft potentials and Grad's angular cutoff. We prove that uniform (in time) bounds in $L^1 ((1 + |v|^s)dv)$ and $H^k$ norms, $s, k \ge 0$ hold for its solution. The proof is based on the mixture of estimates of polynomial growth in time of those norms together with the quantitative results of relaxation to equilibrium in $L^1$ obtained by the so-called “entropy-entropy production” method in the context of dissipative systems with slowly growing a priori bounds (see reference [14]).Subjects / Keywords
uniform in time; regularity bounds; mo- ment bounds; soft potentials; spatially homogeneous; Boltzmann equationRelated items
Showing items related by title and author.
-
Desvillettes, Laurent; Mouhot, Clément (2009) Article accepté pour publication ou publié
-
Mouhot, Clément (2006) Article accepté pour publication ou publié
-
Desvillettes, Laurent; Mouhot, Clément (2005) Article accepté pour publication ou publié
-
Mouhot, Clément; Villani, Cédric (2004) Article accepté pour publication ou publié
-
Mouhot, Clément; Fournier, Nicolas (2009) Article accepté pour publication ou publié