Steiner 2-edge connected subgraph polytopes on series-parallel graphs
Baïou, Mourad; Mahjoub, Ali Ridha (1997), Steiner 2-edge connected subgraph polytopes on series-parallel graphs, SIAM Journal on Discrete Mathematics, 10, 3, p. 505-514. http://dx.doi.org/10.1137/S0895480193259813
Type
Article accepté pour publication ou publiéDate
1997Journal name
SIAM Journal on Discrete MathematicsVolume
10Number
3Publisher
SIAM
Pages
505-514
Publication identifier
Metadata
Show full item recordAbstract (EN)
Given a graph G=(V,E) with weights on its edges and a set of specified nodes $S\subseteq V$, the Steiner 2-edge survivable network problem is to find a minimum weight subgraph of G such that between every two nodes of S there are at least two edge-disjoint paths. This problem has applications to the design of reliable communication and transportation networks. In this paper, we give a complete linear description of the polytope associated with the solutions to this problem when the underlying graph is series-parallel. We also discuss related polyhedra.Subjects / Keywords
Series-parallel graphs; Connected subgraphs; PolytopesRelated items
Showing items related by title and author.
-
Didi Biha, Mohamed; Mahjoub, Ali Ridha (1996) Article accepté pour publication ou publié
-
Fonlupt, Jean; Mahjoub, Ali Ridha (2006) Article accepté pour publication ou publié
-
Mahjoub, Ali Ridha; Pesneau, Pierre (2008) Article accepté pour publication ou publié
-
Fonlupt, Jean; Mahjoub, Ali Ridha (1999) Communication / Conférence
-
Baïou, Mourad; Mahjoub, Ali Ridha (2002) Article accepté pour publication ou publié