dc.contributor.author | Kerivin, Hervé | |
dc.contributor.author | Mahjoub, Ali Ridha | |
dc.date.accessioned | 2010-04-12T08:31:07Z | |
dc.date.available | 2010-04-12T08:31:07Z | |
dc.date.issued | 2002 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/3917 | |
dc.language.iso | en | en |
dc.subject | Separation algorithm | en |
dc.subject | Submodular function | en |
dc.subject | Partition inequalities | en |
dc.subject | Survivable network | en |
dc.subject.ddc | 003 | en |
dc.title | Separation of partition inequalities for the (1,2)-survivable network design problem | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | Given a graph G=(V,E) with edge costs and an integer vector Image associated with the nodes of V, the survivable network design problem is to find a minimum cost subgraph of G such that between every pair of nodes s,t of V, there are at least min{r(s),r(t)} edge-disjoint paths. In this paper we consider that problem when rset membership, variant{1,2}V. This case is of particular interest to the telecommunication industry. We show that the separation problem for the so-called partition inequalities reduces to minimizing a submodular function. This yields a polynomial time separation algorithm for these inequalities in that case. | en |
dc.relation.isversionofjnlname | Operations Research Letters | |
dc.relation.isversionofjnlvol | 30 | en |
dc.relation.isversionofjnlissue | 4 | en |
dc.relation.isversionofjnldate | 2002-08 | |
dc.relation.isversionofjnlpages | 265-268 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1016/S0167-6377(02)00182-7 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Recherche opérationnelle | en |