Approximation of the Clustered Set Covering Problem
Alfandari, Laurent; Monnot, Jérôme (2010), Approximation of the Clustered Set Covering Problem, ISCO International Symposium on Combinatorial Optimization, 2010-03, Hammamet, Tunisie
Type
Communication / ConférenceDate
2010Conference title
ISCO International Symposium on Combinatorial OptimizationConference date
2010-03Conference city
HammametConference country
TunisieJournal name
Electronic Notes in Discrete MathematicsVolume
36Publisher
Elsevier
Pages
479-485
Publication identifier
Metadata
Show full item recordAbstract (EN)
We define a NP-hard clustered variant of the Set Covering Problem where subsets are partitioned into K clusters and a fixed cost is paid for selecting at least one subset in a given cluster. This variant can reformulate as a master problem various multicommodity flow problems in transportation planning. We show that the problem is approximable within ratio (1 + ǫ)(e/e− 1)H(q), where q is the maximum number of elements covered by a cluster and H(q) = Pq i=1 1 i .Subjects / Keywords
Approximation; NP-hardness; Maximal Coverage; Set Covering; Integer ProgrammingRelated items
Showing items related by title and author.
-
Alfandari, Laurent; Monnot, Jérôme (2013) Communication / Conférence
-
Alfandari, Laurent; Monnot, Jérôme (2014) Article accepté pour publication ou publié
-
Alfandari, Laurent; Paschos, Vangelis (1998) Communication / Conférence
-
Escoffier, Bruno; Hammer, Peter (2007) Article accepté pour publication ou publié
-
Alfandari, Laurent (2000) Communication / Conférence