On computational tools for Bayesian data analysis
Robert, Christian P.; Marin, Jean-Michel (2010), On computational tools for Bayesian data analysis, in Böcker, Klaus, Rethinking Risk Measurement and Reporting, Risk Books : London
Type
Chapitre d'ouvrageExternal document link
http://hal.archives-ouvertes.fr/hal-00473020/fr/Date
2010Book title
Rethinking Risk Measurement and ReportingBook author
Böcker, KlausPublisher
Risk Books
Published in
London
ISBN
978-1-906348-40-3
Number of pages
527Metadata
Show full item recordAbstract (EN)
While Robert and Rousseau (2010) addressed the foundational aspects of Bayesian analysis, the current chapter details its practical aspects through a review of the computational methods available for approximating Bayesian procedures. Recent innovations like Monte Carlo Markov chain, sequential Monte Carlo methods and more recently Approximate Bayesian Computation techniques have considerably increased the potential for Bayesian applications and they have also opened new avenues for Bayesian inference, first and foremost Bayesian model choice.Subjects / Keywords
latent variables models; Monte Carlo methods; Bayesian inference; adaptivity; Approximate Bayesian Computation techniques; MCMC algorithms; model choiceRelated items
Showing items related by title and author.
-
Robert, Christian P.; Celeux, Gilles; Kamary, Kaniav; Malsiner-Walli, Gertraud; Marin, Jean-Michel (2019) Chapitre d'ouvrage
-
Marin, Jean-Michel; Robert, Christian P. (2007) Ouvrage
-
Marin, Jean-Michel; Pudlo, Pierre; Robert, Christian P.; Ryder, Robin J. (2012) Article accepté pour publication ou publié
-
Pillai, Natesh S.; Marin, Jean-Michel; Robert, Christian P. (2011-01) Document de travail / Working paper
-
Cornuet, Jean-Marie; Robert, Christian P.; Pudlo, Pierre; Guillemaud, Thomas; Marin, Jean-Michel; Lombaert, Eric; Estoup, Arnaud (2012) Article accepté pour publication ou publié