• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

Parabolic schemes for quasi-linear parabolic and hyperbolic PDEs via stochastic calculus

Lépinette, Emmanuel; Darses, Sébastien (2012), Parabolic schemes for quasi-linear parabolic and hyperbolic PDEs via stochastic calculus, Stochastic Analysis and Applications, 30, 1, p. 67-99. http://dx.doi.org/10.1080/07362994.2012.628914

Type
Article accepté pour publication ou publié
Lien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00471646/fr/
Date
2012
Nom de la revue
Stochastic Analysis and Applications
Volume
30
Numéro
1
Éditeur
Taylor & Francis
Pages
67-99
Identifiant publication
http://dx.doi.org/10.1080/07362994.2012.628914
Métadonnées
Afficher la notice complète
Auteur(s)
Lépinette, Emmanuel

Darses, Sébastien
Résumé (EN)
We consider two quasi-linear initial-value Cauchy problems on Rd: a parabolic system and an hyperbolic one. They both have a rst order non-linearity of the form (t; x; u) ru, a forcing term h(t; x; u) and an initial condition u0 2 L1(Rd) \ C1(Rd), where (resp. h) is smooth and locally (resp. globally) Lipschitz in u uniformly in (t; x). We prove the existence of a unique global strong solution for the parabolic system. We show the existence of a unique local strong solution for the hyperbolic one and we give a lower bound regarding its blow up time. In both cases, we do not use weak solution theory but recursive parabolic schemes studied via a stochastic approach and a regularity result for sequences of parabolic operators. The result on the hyperbolic problem is performed by means of a non-classical vanishing viscosity method.
Mots-clés
Stochastic Calculus; Feynman-Kac Formula; Girsanov's Theorem; Quasi-linear Parabolic PDEs; Hyperbolic systems; Vanishing viscosity method; Smooth solutions

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    A necessary and sufficient condition for rationalizability in a quasi-linear context 
    Rochet, Jean-Charles (1987) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Quasi linear parabolic PDE in a junction with non linear Neumann vertex condition 
    Wahbi, Isaac (2021) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Minimisation methods for quasi-linear problems, with an application to periodic water waves 
    Buffoni, Boris; Séré, Eric; Toland, John (2005) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    H convergence for quasi-linear elliptic equations with quadratic growth 
    Bensoussan, Alain; Boccardo, L.; Murat, F. (1992) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Quantitative Finance For The Beginners: Stochastic Models and European and Asian Options Pricing 
    Lépinette, Emmanuel (2023) Ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo