Show simple item record

hal.structure.identifier
dc.contributor.authorLépinette, Emmanuel*
hal.structure.identifier
dc.contributor.authorDarses, Sébastien*
dc.date.accessioned2010-04-29T15:04:18Z
dc.date.available2010-04-29T15:04:18Z
dc.date.issued2012
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/4059
dc.language.isoenen
dc.subjectStochastic Calculusen
dc.subjectFeynman-Kac Formulaen
dc.subjectGirsanov's Theoremen
dc.subjectQuasi-linear Parabolic PDEsen
dc.subjectHyperbolic systemsen
dc.subjectVanishing viscosity methoden
dc.subjectSmooth solutionsen
dc.subject.ddc519en
dc.titleParabolic schemes for quasi-linear parabolic and hyperbolic PDEs via stochastic calculusen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe consider two quasi-linear initial-value Cauchy problems on Rd: a parabolic system and an hyperbolic one. They both have a rst order non-linearity of the form (t; x; u) ru, a forcing term h(t; x; u) and an initial condition u0 2 L1(Rd) \ C1(Rd), where (resp. h) is smooth and locally (resp. globally) Lipschitz in u uniformly in (t; x). We prove the existence of a unique global strong solution for the parabolic system. We show the existence of a unique local strong solution for the hyperbolic one and we give a lower bound regarding its blow up time. In both cases, we do not use weak solution theory but recursive parabolic schemes studied via a stochastic approach and a regularity result for sequences of parabolic operators. The result on the hyperbolic problem is performed by means of a non-classical vanishing viscosity method.en
dc.relation.isversionofjnlnameStochastic Analysis and Applications
dc.relation.isversionofjnlvol30
dc.relation.isversionofjnlissue1
dc.relation.isversionofjnldate2012
dc.relation.isversionofjnlpages67-99
dc.relation.isversionofdoihttp://dx.doi.org/10.1080/07362994.2012.628914
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00471646/fr/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherTaylor & Francis
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record