hal.structure.identifier | | |
dc.contributor.author | Lépinette, Emmanuel | * |
hal.structure.identifier | | |
dc.contributor.author | Darses, Sébastien | * |
dc.date.accessioned | 2010-04-29T15:04:18Z | |
dc.date.available | 2010-04-29T15:04:18Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/4059 | |
dc.language.iso | en | en |
dc.subject | Stochastic Calculus | en |
dc.subject | Feynman-Kac Formula | en |
dc.subject | Girsanov's Theorem | en |
dc.subject | Quasi-linear Parabolic PDEs | en |
dc.subject | Hyperbolic systems | en |
dc.subject | Vanishing viscosity method | en |
dc.subject | Smooth solutions | en |
dc.subject.ddc | 519 | en |
dc.title | Parabolic schemes for quasi-linear parabolic and hyperbolic PDEs via stochastic calculus | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We consider two quasi-linear initial-value Cauchy problems on Rd: a parabolic system and an hyperbolic one. They both have a rst order non-linearity of the form (t; x; u) ru, a forcing term h(t; x; u) and an initial condition u0 2 L1(Rd) \ C1(Rd), where (resp. h) is smooth and locally (resp. globally) Lipschitz in u uniformly in (t; x). We prove the existence of a unique global strong solution for the parabolic system. We show the existence of a unique local strong solution for the hyperbolic one and we give a lower bound regarding its blow up time. In both cases, we do not use weak solution theory but recursive parabolic schemes studied via a stochastic approach and a regularity result for sequences of parabolic operators. The result on the hyperbolic problem is performed by means of a non-classical vanishing viscosity method. | en |
dc.relation.isversionofjnlname | Stochastic Analysis and Applications | |
dc.relation.isversionofjnlvol | 30 | |
dc.relation.isversionofjnlissue | 1 | |
dc.relation.isversionofjnldate | 2012 | |
dc.relation.isversionofjnlpages | 67-99 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1080/07362994.2012.628914 | |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00471646/fr/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Taylor & Francis | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
hal.author.function | aut | |
hal.author.function | aut | |