• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

A min-max relation for K3-covers in graphs non contractible to K5\e

Mahjoub, Ali Ridha (1995), A min-max relation for K3-covers in graphs non contractible to K5\e, Discrete Applied Mathematics, 62, 1-3, p. 209-219. http://dx.doi.org/10.1016/0166-218X(94)00153-5

Type
Article accepté pour publication ou publié
Date
1995
Journal name
Discrete Applied Mathematics
Volume
62
Number
1-3
Publisher
Elsevier
Pages
209-219
Publication identifier
http://dx.doi.org/10.1016/0166-218X(94)00153-5
Metadata
Show full item record
Author(s)
Mahjoub, Ali Ridha
Abstract (EN)
In Euler and Mahjoub (1991) it is proved that the triangle-free subgraph polytope of a graph noncontractible to K5e is completely described by the trivial inequalities and the so-called triangle and odd wheel inequalities. In this paper we show that the system denned by those inequalities is TDI for a subclass of that class of graphs. As a consequence we obtain the following min-max relation: If G is a graph noncontractible to K5e, then the minimum number of edges covering all the triangles of G equals the maximum profit of a partition of the edge set of G into edges, triangles and odd wheels. Here the profit of an edge is 0, the profit of a triangle is 1 and the profit of a 2k + 1-wheel (Image is equal to k + 1.
Subjects / Keywords
Polytopes; Total dual integrality; Ki-covers; Graphs noncontractible to K5e

Related items

Showing items related by title and author.

  • Thumbnail
    Max Flow and Min Cut with bounded-length paths: complexity, algorithms, and approximation 
    Mahjoub, Ali Ridha; McCormick, S. Thomas (2010) Article accepté pour publication ou publié
  • Thumbnail
    Pseudo-polynomial algorithms for min-max and min-max regret problems 
    Aissi, Hassene; Bazgan, Cristina; Vanderpooten, Daniel (2005) Communication / Conférence
  • Thumbnail
    From constant traffic matrices to hose workload model for VPN tree design 
    Thabti, Boulbaba; Lourimi, Ali; Youssef, Habib; Mahjoub, Ali Ridha; Meddeb, Aref (2012) Communication / Conférence
  • Thumbnail
    Parameterized algorithms for min-max multiway cut and list digraph homomorphism 
    Kim, Eun Jung; Paul, Christophe; Sau Valls, Ignasi; Thilikos, Dimitrios M. (2017) Article accepté pour publication ou publié
  • Thumbnail
    Heuristic and Exact Algorithms for the Interval Min–Max Regret Knapsack Problem 
    Furini, Fabio; Iori, Manuel; Martello, Silvano; Yagiura, Mutsunori (2015) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo