dc.contributor.author | Mahjoub, Ali Ridha | |
dc.date.accessioned | 2010-04-30T09:43:07Z | |
dc.date.available | 2010-04-30T09:43:07Z | |
dc.date.issued | 1995 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/4062 | |
dc.language.iso | en | en |
dc.subject | Polytopes | en |
dc.subject | Total dual integrality | en |
dc.subject | Ki-covers | en |
dc.subject | Graphs noncontractible to K5e | en |
dc.subject.ddc | 003 | en |
dc.title | A min-max relation for K3-covers in graphs non contractible to K5\e | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | In Euler and Mahjoub (1991) it is proved that the triangle-free subgraph polytope of a graph noncontractible to K5e is completely described by the trivial inequalities and the so-called triangle and odd wheel inequalities. In this paper we show that the system denned by those inequalities is TDI for a subclass of that class of graphs. As a consequence we obtain the following min-max relation: If G is a graph noncontractible to K5e, then the minimum number of edges covering all the triangles of G equals the maximum profit of a partition of the edge set of G into edges, triangles and odd wheels. Here the profit of an edge is 0, the profit of a triangle is 1 and the profit of a 2k + 1-wheel (Image is equal to k + 1. | en |
dc.relation.isversionofjnlname | Discrete Applied Mathematics | |
dc.relation.isversionofjnlvol | 62 | en |
dc.relation.isversionofjnlissue | 1-3 | en |
dc.relation.isversionofjnldate | 1995-09 | |
dc.relation.isversionofjnlpages | 209-219 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1016/0166-218X(94)00153-5 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Recherche opérationnelle | en |