• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Maximum Independent Set in Graphs of Average Degree at Most Three in O(1.08537^n)

Van Rooij, Johan; Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2010), Maximum Independent Set in Graphs of Average Degree at Most Three in O(1.08537^n), in Kratochvil, Jan; Li, Angsheng; Fiala, Jiri; Kolman, Petr, Theory and Applications of Models of Computation 7th Annual Conference, TAMC 2010, Prague, Czech Republic, June 7-11, 2010. Proceedings, Springer : Berlin, p. 373-384

Type
Communication / Conférence
Date
2010
Conference title
7th Annual Conference on Theory and Applications of Models of Computation
Conference date
2010-06
Conference city
Prague
Conference country
République tchèque
Book title
Theory and Applications of Models of Computation 7th Annual Conference, TAMC 2010, Prague, Czech Republic, June 7-11, 2010. Proceedings
Book author
Kratochvil, Jan; Li, Angsheng; Fiala, Jiri; Kolman, Petr
Publisher
Springer
Series title
Lecture Notes in Computer Science
Series number
6108/2010
Published in
Berlin
ISBN
978-3-642-13561-3
Pages
373-384
Publication identifier
http://dx.doi.org/10.1007/978-3-642-13562-0_34
Metadata
Show full item record
Author(s)
Van Rooij, Johan
Bourgeois, Nicolas
Escoffier, Bruno
Paschos, Vangelis
Abstract (EN)
We show that Maximum Independent Set on connected graphs of average degree at most three can be solved in ${\mathcal O}(1.08537^n)$ time and linear space. This improves previous results on graphs of maximum degree three, as our connectivity requirement only functions to ensure that each connected component has average degree at most three. We link this result to exact algorithms of Maximum Independent Set on general graphs. Also, we obtain a faster parameterised algorithm for Vertex Cover restricted to graphs of maximum degree three running in time ${\mathcal O}^*(1.1781^k)$.
Subjects / Keywords
graphs of maximum degree three; Maximum Independent Set

Related items

Showing items related by title and author.

  • Thumbnail
    Fast algorithms for Max Independant Set in graphs of small average degree 
    van Rooij, Johan; Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2008) Document de travail / Working paper
  • Thumbnail
    Fast Algorithms for max independent set 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis; Van Rooij, Johan (2012) Article accepté pour publication ou publié
  • Thumbnail
    An O *(1.0977 n ) Exact Algorithm for max independent set in Sparse Graphs 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2008) Communication / Conférence
  • Thumbnail
    Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2011) Article accepté pour publication ou publié
  • Thumbnail
    Average-case complexity of a branch-and-bound algorithm for maximum independent set, under the $\mathcal{G}(n,p)$ random model 
    Bourgeois, N.; Catellier, Rémi; Denat, T.; Paschos, Vangelis (2015) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo