• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

EM algorithm coupled with particle filter for maximum likelihood parameter estimation of stochastic differential mixed-effects models

Samson, Adeline; Donnet, Sophie (2010), EM algorithm coupled with particle filter for maximum likelihood parameter estimation of stochastic differential mixed-effects models. https://basepub.dauphine.fr/handle/123456789/4851

Type
Document de travail / Working paper
External document link
http://hal.archives-ouvertes.fr/hal-00519576/fr/
Date
2010
Publisher
Université Paris-Dauphine
Published in
Paris
Pages
37
Metadata
Show full item record
Author(s)
Samson, Adeline
Donnet, Sophie cc
Abstract (EN)
Biological processes measured repeatedly among a series of individuals are standardly analyzed by mixed models. They use common regression function and error model, both depending on individual random parameters. Regression functions defined by parametric Stochastic Differential Equations (SDEs) model adequately biological processes. This results in a mixed-effects model defined by an SDE. We focus on the parameter maximum likelihood estimation of this model. As the likelihood is not explicit, we propose the use of a stochastic version of the Expectation- Maximization algorithm combined with the Particle Markov Chain Monte Carlo method. We prove the convergence of the proposed algorithm towards the maximum likelihood estimator. We illustrate the performance of this estimation method on simulated datasets. We consider two examples: the first one is based on an Ornstein-Uhlenbeck process with two random parameters and an additive error model; the second one is based on a time-inhomogeneous SDE (Gompertz SDE) with a stochastic volatility error model and three random parameters. We highlight the superiority of our estimator over an estimator based on the EM algorithm coupled with standard MCMC algorithms.
Subjects / Keywords
Stochastic Differential Equations; algorithm
JEL
C15 - Statistical Simulation Methods: General

Related items

Showing items related by title and author.

  • Thumbnail
    A review on estimation of stochastic differential equations for pharmacokinetic/pharmacodynamic models 
    Donnet, Sophie; Samson, Adeline (2013) Article accepté pour publication ou publié
  • Thumbnail
    Bayesian analysis of growth curves using mixed models defined by stochastic differential equations 
    Foulley, Jean-Louis; Samson, Adeline; Donnet, Sophie (2010) Article accepté pour publication ou publié
  • Thumbnail
    Bayesian Analysis of Growth Curves Using Mixed Models Defined by Stochastic Differential Equations 
    Donnet, Sophie; Foulley, Jean-Louis; Samson, Adeline (2010) Communication / Conférence
  • Thumbnail
    Discussion on "Parameter estimation for differential equations: a generalized smoothing approach" (by Ramsay JO, Hooker G, Campbell D and Cao J), 
    Samson, Adeline; Donnet, Sophie (2007) Article accepté pour publication ou publié
  • Thumbnail
    Parametric inference for mixed models defined by diffusion processes 
    Samson, Adeline; Donnet, Sophie (2008) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo