Show simple item record

dc.contributor.authorMoretti, Stefano
HAL ID: 739814
ORCID: 0000-0003-3627-3257
dc.contributor.authorBranzei, Rodica
dc.contributor.authorNorde, Henk
dc.contributor.authorTijs, Stef
dc.date.accessioned2010-10-20T16:27:45Z
dc.date.available2010-10-20T16:27:45Z
dc.date.issued2005
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/4950
dc.language.isoenen
dc.subjectCost sharingen
dc.subjectMinimum cost spanning tree gamesen
dc.subjectPopulation monotonic allocation schemesen
dc.subjectValueen
dc.subject.ddc519en
dc.titleThe P-value for cost sharing in minimum cost spanning tree situationsen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherUniversity of Genova, National Cancer Research Institute of Genova;Italie
dc.contributor.editoruniversityotherUniversity of Genova;Italie
dc.contributor.editoruniversityotherAlexandru Ioan Cuza University;Roumanie
dc.contributor.editoruniversityotherTilburg University;Pays-Bas
dc.description.abstractenThe aim of this paper is to introduce and axiomatically characterize the P-value as a rule to solve the cost sharing problem in minimum cost spanning tree (mcst) situations. The P-value is related to the Kruskal algorithm for finding an mcst. Moreover, the P-value leads to a core allocation of the corresponding mcst game, and when applied also to the mcst subsituations it delivers a population monotonic allocation scheme. A cone-wise positive linearity property is one of the basic ingredients of an axiomatic characterization of the P-value.en
dc.relation.isversionofjnlnameTheory and Decision
dc.relation.isversionofjnlvol56en
dc.relation.isversionofjnlissue1-2en
dc.relation.isversionofjnldate2005-01
dc.relation.isversionofjnlpages47-61en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s11238-004-5635-5en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record