
Minimum cost spanning tree games and population monotonic allocation schemes
Norde, Henk; Moretti, Stefano; Tijs, Stef (2004), Minimum cost spanning tree games and population monotonic allocation schemes, European Journal of Operational Research, 154, 1, p. 84-97. http://dx.doi.org/10.1016/S0377-2217(02)00714-2
View/ Open
Type
Article accepté pour publication ou publiéDate
2004Journal name
European Journal of Operational ResearchVolume
154Number
1Publisher
Elsevier
Pages
84-97
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this paper we present the Subtraction Algorithm that computes for every classical minimum cost spanning tree game a population monotonic allocation scheme. As a basis for this algorithm serves a decomposition theorem that shows that every minimum cost spanning tree game can be written as nonnegative combination of minimum cost spanning tree games corresponding to 0–1 cost functions. It turns out that the Subtraction Algorithm is closely related to the famous algorithm of Kruskal for the determination of minimum cost spanning trees. For variants of the classical minimum cost spanning tree games we show that population monotonic allocation schemes do not necessarily exist.Subjects / Keywords
Minimum cost spanning tree games; Population monotonic allocation schemesRelated items
Showing items related by title and author.
-
Tijs, Stef; Branzei, Rodica; Moretti, Stefano; Norde, Henk (2006) Article accepté pour publication ou publié
-
The Bird Core for Minimum Cost Spanning Tree Problems Revisited: Monotonicity and Additivity Aspects Norde, Henk; Branzei, Rodica; Moretti, Stefano; Tijs, Stef (2006) Chapitre d'ouvrage
-
Moretti, Stefano; Branzei, Rodica; Norde, Henk; Tijs, Stef (2005) Article accepté pour publication ou publié
-
Moretti, Stefano; Tijs, Stef; Branzei, Rodica; Norde, Henk (2009) Article accepté pour publication ou publié
-
Branzei, Rodica; Gök, Zeynep Alparslan; Moretti, Stefano; Tijs, Stef (2011) Article accepté pour publication ou publié