• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

The Max Quasi-Independent Set Problem

Pottié, Olivier; Paschos, Vangelis; Milis, Ioannis; Lucarelli, Giorgio; Giannakos, Aristotelis; Bourgeois, Nicolas (2010), The Max Quasi-Independent Set Problem, in Mayr, Ernst W.; Ablayev, Farid, Computer Science – Theory and Applications 5th International Computer Science Symposium in Russia, CSR 2010, Kazan, Russia, June 16-20, 2010. Proceedings, Springer : Berlin, p. 60-72

View/Open
qiscah-1.pdf (548.6Kb)
Type
Communication / Conférence
Date
2010
Conference title
5th International Computer Science Symposium in Russia, CSR 2010
Conference date
2010-06
Conference city
Kazan
Conference country
Russie
Book title
Computer Science – Theory and Applications 5th International Computer Science Symposium in Russia, CSR 2010, Kazan, Russia, June 16-20, 2010. Proceedings
Book author
Mayr, Ernst W.; Ablayev, Farid
Publisher
Springer
Published in
Berlin
ISBN
978-3-642-13181-3
Number of pages
397
Pages
60-72
Metadata
Show full item record
Author(s)
Pottié, Olivier
Paschos, Vangelis
Milis, Ioannis
Lucarelli, Giorgio cc
Giannakos, Aristotelis
Bourgeois, Nicolas
Abstract (EN)
In this paper, we deal with the problem of finding quasi- independent sets in graphs. This problem is formally defined in three versions, which are shown to be polynomially equivalent. The one that looks most general, namely, f-QIS, consists of, given a graph and a non- decreasing function f , finding a maximum size subset Q of the vertices of the graph, such that the number of edges in the induced subgraph is less than or equal to f (|Q|). For this problem, we show an exact solu- d−27/23 ∗ n tion method that runs within time O (2 d+1 ) on graphs of average degree bounded by d. For the most specifically defined γ-QIS and k-QIS problems, several results on complexity and approximation are shown, and greedy algorithms are proposed, analyzed and tested.
Subjects / Keywords
polynomially equivalent; graph; turing machine; security protocols; quantum computation; maximum spanning tree; computability

Related items

Showing items related by title and author.

  • Thumbnail
    The max quasi-independent set problem 
    Bourgeois, Nicolas; Giannakos, Aristotelis; Lucarelli, Giorgio; Milis, Ioannis; Paschos, Vangelis; Pottié, Olivier (2012) Article accepté pour publication ou publié
  • Thumbnail
    Exact and superpolynomial approximation algorithms for the densest k-subgraph problem 
    Bourgeois, Nicolas; Giannakos, Aristotelis; Lucarelli, Giorgio; Milis, Ioannis; Paschos, Vangelis (2017) Article accepté pour publication ou publié
  • Thumbnail
    Exact and approximation algorithms for densest k-subgraph 
    Lucarelli, Giorgio; Milis, Ioannis; Giannakos, Aristotelis; Paschos, Vangelis; Bourgeois, Nicolas (2013) Communication / Conférence
  • Thumbnail
    Approximating the max edge-coloring problem 
    Bourgeois, Nicolas; Lucarelli, Giorgio; Milis, Ioannis; Paschos, Vangelis (2010) Article accepté pour publication ou publié
  • Thumbnail
    Approximating the max edge-coloring problem 
    Bourgeois, Nicolas; Lucarelli, Giorgio; Milis, Ioannis; Paschos, Vangelis (2009) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo